Abstract
Recognising the degree of climate transformations in the Arctic becomes vital, especially in times of rapid global climate change. The 21st century has seen a renaissance in Arctic coastal research. Here, we aim to present this recent progress. Moving from the European Arctic through the Siberian part and ending with the Canadian Arctic Archipelago (CAA), we describe how the region’s coasts have transformed. This work is mostly focussed on progress in coastal geomorphology, geohazards, and reconstructions of the paleoarchives, although we also address the future research challenges of cold region coastal environments.
Funding
Zofia Owczarek and Zofia Stachowska-Kamińska are supported by the Polish National Science Centre grant ‘ASPIRE–Arctic storm impacts recorded in beach-ridges and lake archives: scenarios for less icy future’ No. UMO– 2020/37/B/ST10/03074. Oskar Kostrzewa and Małgorzata Szczypińska are supported by the Polish National Science Centre grant ‘GLAVE– paraglacial coasts transformed by tsunami waves – past, present and warmer future’ No. UMO– 2020/38/E/ST10/00042. The authors would like to thank Mateusz Strzelecki for his valuable comments and advice during the writing of the manuscript. The authors also want to thank Louise Farquharson, Marek Kasprzak, Michael Lim, and Aleksandra Wołoszyn for lending their photos from Svalbard, Greenland, Alaska, and Yukon, thanks to which the work has been enriched with interesting examples of Arctic coasts.
References
Aga J., Piermattei L., Girod L., Aalstad K., Eiken T., Kääb A., Westermann S.,2023. Coastal retreat rates of high-Arctic rock cliffs on Brøgger peninsula, Svalbard, accelerate during the past decade. EGUsphere, Preprint repository. DOI: https://doi.org/10.5194/egusphere-2023-321
Alley R.B., Cuffey K.M., Bassis J.N., Alley K.E., Wang S., Parizek B.R., Anandakrishnan S., Christianson K., Deconto R.M., 2023. Iceberg Calving: Regimes and Transitions. Annual Review of Earth and Planetary Sciences 51: 189-215. DOI: https://doi.org/10.1146/annurev-earth-032320-110916
Amundson J.M., Clinton J.F., Fahnestock M., Truffer M., Lüthi M.P., Motyka R.J., 2012. Observing calving-generated ocean waves with coastal broadband seismometers, Jakobshavn Isbræ, Greenland. Annals of Glaciology 53(60): 79-84. DOI: https://doi.org/10.3189/2012/AoG60A200
Amundson J.M., Truffer M., Lüthi M.P., Fahnestock M., West M., Motyka R.J., 2008. Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland’, Geophysical Research Letters, 35(22). DOI: https://doi.org/10.1029/2008GL035281
Aström J.A., Vallot D., Schäfer M., Welty E.Z., O’Neel S., Bartholomaus T.C., Liu Y., Riikilä T.I., Zwinger T., Timonen J., Moore J.C., 2014. Termini of calving glaciers as self-organized critical systems. Nature Geoscience 7(12): 874-878. DOI: https://doi.org/10.1038/ngeo2290
Baichtal J.F., Lesnek A.J., Carlson R.J., Schmuck N.S., Smith J.L., Landwehr D.J., Briner J.P., 2021. Late Pleistocene and early Holocene sea-level history and glacial retreat interpreted from shell-bearing marine deposits of southeastern Alaska, USA. Geosphere 17(6): 1590-1615. DOI: https://doi.org/10.1130/GES02359.1
Ballantyne C.K., 2002. Paraglacial geomorphology. Quaternary Science Reviews 21(18-19): 1935-2017. DOI: https://doi.org/10.1016/S0277-3791(02)00005-7
Ballinger T.J., Overland J.E., Wang M., Bhatt U.S., Hanna E., Hanssen-Bauer I., Kim S-J., Thoman R.L., Walsh J.E., 2020. Arctic Report Card 2020.
Baranskaya A.V., Khan N.S., Romanenko F.A., Roy K., Peltier W.R., Horton B.P., 2018. A postglacial relative sea-level database for the Russian Arctic coast. Quaternary Science Reviews 199: 188-205. DOI: https://doi.org/10.1016/j.quascirev.2018.07.033
Barnhart K.R., Miller C.R., Overeem I., Kay J.E., 2016. Mapping the future expansion of Arctic open water. Nature Climate Change 6(3): 280-285. DOI: https://doi.org/10.1038/nclimate2848
Bauch H.A., Mueller-Lupp T., Taldenkova E., Spielhagen R.F., Kassens H., Grootes P.M., Thiede J., Heinemeier J., Petryashov V.V., 2001. Chronology of the Holocene transgression at the North Siberian margin. Global and Planetary Change 31: 125-139. DOI: https://doi.org/10.1016/S0921-8181(01)00116-3
Belova N.G., Ogorodov S.A., Shabanova N.N., Maslakov A,A, 2019. Coastal retreat at Kharasaveyskoye gas and condensate field area, Kara Sea, Russia since 1970s. In: IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing. DOI: https://doi.org/10.1088/1755-1315/324/1/012027
Bendixen M., Kroon A., 2017. Conceptualizing delta forms and processes in Arctic coastal environments. Earth Surface Processes and Landforms 42(8): 1227-1237. DOI: https://doi.org/10.1002/esp.4097
Bendixen M., Lønsmann I.L., Anker B.A., Elberling B., Westergaard-Nielsen A., Overeem I., Barnhart K.R., Khan A.S., Box J.E., Abermann J., Langley K., Kroon A., 2017. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550(7674): 101-104. DOI: https://doi.org/10.1038/nature23873
Benjamin J., Rosser N.J., Dunning S.A., Hardy R.J., Kelfoun K., Szczuciński W., 2018. Transferability of a calibrated numerical model of rock avalanche run-out: Application to 20 rock avalanches on the Nuussuaq Peninsula, West Greenland. Earth Surface Processes and Landforms 43(15): 3057-3073. DOI: https://doi.org/10.1002/esp.4469
Benn D.I., Warren C.R., Mottram R.H., 2007. Calving processes and the dynamics of calving glaciers. Earth-Science Reviews 82(3-4): 143-179. DOI: https://doi.org/10.1016/j.earscirev.2007.02.002
Bennike O., Wagner B., Richter A., 2011. Relative sea level changes during the Holocene in the Sisimiut area, south-western Greenland. Journal of Quaternary Science 26(4): 353-361. DOI: https://doi.org/10.1002/jqs.1458
Berry H.B., Whalen D., Lim M., 2021. Long-term ice-rich permafrost coast sensitivity to air temperatures and storm influence: lessons from Pullen Island, Northwest Territories, Canada. Arctic Science 7(4): 723-745. DOI: https://doi.org/10.1139/as-2020-0003
Bigg G.R., Wilton D.J., 2014. Iceberg risk in the Titanic year of 1912: Was it exceptional? Weather 69(4): 100-104. DOI: https://doi.org/10.1002/wea.2238
Bogen J., Bønsnes T.E. 2003. Erosion and sediment transport in High Arctic rivers, Svalbard. Polar Research 22(2): 175-189. DOI: https://doi.org/10.3402/polar.v22i2.6454
Boisson A., Allard M., Sarrazin D., 2020. Permafrost aggradation along the emerging eastern coast of Hudson Bay, Nunavik (northern Québec, Canada). Permafrost and Periglacial Processes 31(1): 128-140. DOI: https://doi.org/10.1002/ppp.2033
Bolshiyanov D., Makarov A., Savelieva L., 2015. Lena River delta formation during the Holocene. Biogeosciences 12(2): 579-593. DOI: https://doi.org/10.5194/bg-12-579-2015
Bourriquen M., Mercier D., Baltzer A., Fournier J., Costa S., Roussel E., 2018. Paraglacial coasts responses to glacier retreat and associated shifts in river floodplains over decadal timescales (1966-2016), Kongsfjorden, Svalbard. Land Degradation and Development 29(11): 4173-4185. DOI: https://doi.org/10.1002/ldr.3149
Box J.E., Hubbard A., Bahr D.B., Colgan W.T., Fettweis X., Mankoff K.D., Wehrlé A., Noël B., van den Broeke M.R., Wouters B., Bjørk A.A., Fausto R.S., 2022. Greenland ice sheet climate disequilibrium and committed sea-level rise. Nature Climate Change 12: 808-813. DOI: https://doi.org/10.1038/s41558-022-01441-2
Brigham-Grette J., Hopkins D.M., 1995. Emergent Marine Record and Paleoclimate of the Last Interglaciation along the Northwest Alaskan Coast. Quaternary Research 43(2): 159-173. DOI: https://doi.org/10.1006/qres.1995.1017
Brückner H., Schellmann G., Van Der Borg K., 2002. Uplifted Beach Ridges in Northern Spitsbergen as Indicators for Glacio-Isostasy and Palaeo-Oceanography. Zeitschrift fur Geomorphologie 46(3): 309-336. DOI: https://doi.org/10.1127/zfg/46/2002/309
Buchwał A., Szczuciński W., Strzelecki M.C., Long A.J., 2015. New insights into the 21 November 2000 tsunami in West Greenland from analyses of the tree−ring structure of Salix glauca. Polish Polar Research 36(1): 51-65. DOI: https://doi.org/10.1515/popore-2015-0005
Carrington D., 2017. Arctic stronghold of world’s seeds flooded after permafrost melts. Online: www.theguardian.com/environment/2017/may/19/arctic-stronghold-of-worlds-seeds-flooded-after-permafrost-melts (accessed 14 December 2023).
Casas-Prat M., Wang X.L., 2020. Sea Ice Retreat Contributes to Projected Increases in Extreme Arctic Ocean Surface Waves. Geophysical Research Letters 47(15). DOI: https://doi.org/10.1029/2020GL088100
Chan N.H., Langer M., Juhls B., Rettelbach T., Overduin P., Huppert K., Braun J., 2023. An Arctic delta reduced-complexity model and its reproduction of key geomorphological structures. Earth Surface Dynamics 11(2): 259-285. DOI: https://doi.org/10.5194/esurf-11-259-2023
Cossart E., Mercier D., Decaulne A., Feuillet T. 2013. An overview of the consequences of paraglacial landsliding on deglaciated mountain slopes: Typology, timing and contribution to cascading fluxes. Quaternaire 24(1): 13-24. DOI: https://doi.org/10.4000/quaternaire.6444
Dahl-Jensen T., Larsen L.M., Pedersen S.S.A., Pedersen J., Jepsen H.F., Pedersen K.G., Nielsen T., Pedersen A., Von Platen-Hallermund F., Weng W., 2004. Landslide and Tsunami 21 November 2000 in Paatuut, West Greenland. Natural Hazards 31: 277-287. DOI: https://doi.org/10.1023/B:NHAZ.0000020264.70048.95
De Vernal A., Hillaire-Marcel C., Rochon A., Fréchette B., Henry M., Solignac S., Bonnet S., 2013. Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quaternary Science Reviews 79: 111-121. DOI: https://doi.org/10.1016/j.quascirev.2013.07.006
de Wet G.A., Balascio N.L., D’Andrea W.J., Bakke J., Bradley R.S., Perren B., 2018. Holocene glacier activity reconstructed from proglacial lake Gjøavatnet on Amsterdamøya, NW Svalbard. Quaternary Science Reviews 183: 188-203. DOI: https://doi.org/10.1016/j.quascirev.2017.03.018
Dobiński W., 2011. Permafrost. Earth-Science Reviews 108(3-4): 158-169. DOI: https://doi.org/10.1016/j.earscirev.2011.06.007
Drachev S.S., Kaul N., Beliaev V.N., 2003. Eurasia spreading basin to Laptev Shelf transition: structural pattern and heat flow. Geophysical Journal International 152(3): 688-698. DOI: https://doi.org/10.1046/j.1365-246X.2003.01882.x
Duprat L.P.A.M., Bigg G.R., Wilton D.J., 2016. Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs. Nature Geoscience 9(3): 219-221. DOI: https://doi.org/10.1038/ngeo2633
Dutton A., Carlson A.E., Long A.J., Milne G.A., Clark P.U., DeConto R., Horton B.P., Rahmstorf S., Raymo M.E., 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349(6244). DOI: https://doi.org/10.1126/science.aaa4019
Dyke A.S., Andrews J.T., Clark P.U., England J.H., Miller G.H., Shaw J., Veillette J.J., 2002. The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quaternary Science Reviews 21: 9-31. DOI: https://doi.org/10.1016/S0277-3791(01)00095-6
Dyke A.S., Peltier W.R., 2000. Forms, response times and variability of relative sea-level curves, glaciated North America. Geomorphology 32: 315-333. DOI: https://doi.org/10.1016/S0169-555X(99)00102-6
England J., Atkinson N., Bednarski J., Dyke A.S., Hodgson D.A., Cofaigh Ó.C., 2006. The Innuitian Ice Sheet: configuration, dynamics and chronology. Quaternary Science Reviews 25(7-8): 689-703. DOI: https://doi.org/10.1016/j.quascirev.2005.08.007
England J.H., Furze M.F.A., Doupé J.P., 2009. Revision of the NW Laurentide Ice Sheet: implications for paleoclimate, the northeast extremity of Beringia, and Arctic Ocean sedimentation. Quaternary Science Reviews 28(17-18): 1573-1596. DOI: https://doi.org/10.1016/j.quascirev.2009.04.006
Erikson L.H., Gibbs A.E., Richmond B.M., Storlazzi C.D., Jones B.M., Ohman K.A., 2020. Changing Storm Conditions in Response to Projected 21st Century Climate Change and the Potential Impact on an Arctic Barrier Island-Lagoon System—A Pilot Study for Arey Island and Lagoon, Eastern Arctic Alaska. U.S. Geological Survey Open-File Report 2020-1142. DOI: https://doi.org/10.3133/ofr20201142
Farquharson L., Mann D., Rittenour T., Groves P., Grosse G., Jones B., 2018. Alaskan marine transgressions record out-of-phase Arctic Ocean glaciation during the last interglacial. Geology 46(9): 783-786. DOI: https://doi.org/10.1130/G40345.1
Fedje D., Lausanne A., McLaren D., Mackie Q., Menounos B., 2021. Slowstands, stillstands and transgressions: Paleoshorelines and archaeology on Quadra Island, BC, Canada. Quaternary Science Reviews 270. DOI: https://doi.org/10.1016/j.quascirev.2021.107161
Fischer H., Meissner K.J., Mix A.C., Abram N.J., Austermann J., Brovkin V., Capron E., Colombaroli D., Daniau A.L., Dyez K.A., Felis T., Finkelstein S.A., Jaccard S.L., McClymont E.L., Rovere A., Sutter J., Wolff E.W., Affolter S., Bakker P., Ballesteros-Cánovas J.A., Barbante C., Caley T., Carlson A.E., Churakova O., Cortese G., Cumming B.F., Davis B.A.S., De Vernal A., Emile-Geay J., Fritz S.C., Gierz P., Gottschalk J., Holloway M.D., Joos F., Kucera M., Loutre M.F., Lunt D.J., Marcisz K., Marlon J.R., Martinez P., Masson-Delmotte V., Nehrbass-Ahles C., Otto-Bliesner B.L., Raible C.C., Risebrobakken B., Sánchez Goñi M.F., Arrigo J.S., Sarnthein M., Sjolte J., Stocker T.F., Velasquez Alvárez P.A., Tinner W., Valdes P.J., Vogel H., Wanner H., Yan Q., Yu Z., Ziegler M., Zhou L., 2018. Palaeoclimate constraints on the impact of 2°C anthropogenic warming and beyond. Nature Geoscience 11(7): 474-485. DOI: https://doi.org/10.1038/s41561-018-0146-0
Forbes D.L. (ed.), 2011. State of the Arctic Coast 2010 – Scientific Review and Outlook. International Arctic Science Committee, Land-Ocean Interactions in the Coastal Zone, Arctic Monitoring and Assessment Programme, International Permafrost Association. Helmholtz-Zentrum, Geesthacht, Germany. Online: arcticcoasts.org (accessed 4 January 2024).
Ford J.D., Couture N., Bell T., Clark D.G., 2018. Climate change and Canada’s north coast: Research trends, progress, and future directions. Environmental Reviews 26(1): 82-92. DOI: https://doi.org/10.1139/er-2017-0027
Forman S.L., 1990. Post-glacial relative sea-level history of northwestern Spitsbergen, Svalbard. Geological Society of America Bulletin 102: 1580-1590. DOI: https://doi.org/10.1130/0016-7606(1990)102<1580:PGRSLH>2.3.CO;2
Forman S.L., Lubinski D.J., Ingólfsson Ó., Zeeberg J.J., Snyder J.A., Siegert M.J., Matishov G.G., 2004. A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quaternary Science Reviews 23(11-13): 1391-1434. DOI: https://doi.org/10.1016/j.quascirev.2003.12.007
Fraley K.M., Robards M.D., Rogers M.C., Vollenweider J., Smith B., Whiting A., Jones T., 2021. Freshwater input and ocean connectivity affect habitats and trophic ecology of fishes in Arctic coastal lagoons. Polar Biology 44(7): 1401-1414. DOI: https://doi.org/10.1007/s00300-021-02895-4
Funder S., Goosse H., Jepsen H., Kaas E., Kjær K.H., Korsgaard N.J., Larsen N.K., Linderson H., Lyså A., Möller P., Olsen J., Willerslev E., 2011. A 10,000-year record of Arctic Ocean Sea-ice variability – View from the beach. Science 333(6043): 747-750. DOI: https://doi.org/10.1126/science.1202760
Gauthier D., Anderson S.A., Fritz H.M., Giachetti T., 2018. Karrat Fjord (Greenland) tsunamigenic landslide of 17 June 2017: initial 3D observations. Landslides 15(2): 327-332. DOI: https://doi.org/10.1007/s10346-017-0926-4
Geyman E.C., van Pelt W.J. J., Maloof A.C., Aas H.F., Kohler J., 2022. Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature 601(7893): 374-379. DOI: https://doi.org/10.1038/s41586-021-04314-4
Gibbs A.E., Erikson L.H., Jones B.M., Richmond B.M., Engelstad A.C., 2021. Seven decades of coastal change at Barter Island, Alaska: Exploring the importance of waves and temperature on erosion of coastal permafrost bluffs. Remote Sensing 13(21). DOI: https://doi.org/10.3390/rs13214420
Gibbs A.E., Richmond B.M., 2017. National Assessment of Shoreline Change—Summary Statistics for Updated Vector Shorelines and Associated Shoreline Change Data for the North Coast of Alaska, U.S.-Canadian Border to Icy Cape. U.S. Geological Survey Open-File Report 2017-1107. DOI: https://doi.org/10.3133/ofr20171107
Gibbs A.E., Snyder A.G., Richmond B.M., 2019. National Assessment of Shoreline Change—Historical Shoreline Change Along the North Coast of Alaska, Icy Cape to Cape Prince of Wales. U.S. Geological Survey Open-File Report 2019-1146. DOI: https://doi.org/10.3133/ofr20191146
Goslin J., Fruergaard M., Sander L., Gałka M., Menviel L., Monkenbusch J., Thibault N., Clemmensen L.B., 2018. Holocene centennial to millennial shifts in North-Atlantic storminess and ocean dynamics. Scientific Reports 8(1). DOI: https://doi.org/10.1038/s41598-018-29949-8
Grabiec M., Ignatiuk D., Jania J.A., Moskalik M., Głowacki P., Błaszczyk M., Budzik T., Walczowski W., 2018. Coast formation in an Arctic area due to glacier surge and retreat: The Hornbreen-Hambergbreen case from Spitsbergen. Earth Surface Processes and Landforms 43(2): 387-400. DOI: https://doi.org/10.1002/esp.4251
Gray J., Lauriol B., Bruneau D., Ricard J., 1993. Postglacial emergence of Ungava Peninsula, and its relationship to glacial history. Canadian Journal of Earth Science 30: 1676-1696. Online: www.nrcresearchpress.com (accessed 23 April 2023). DOI: https://doi.org/10.1139/e93-147
Gray J.T., Lauriol B., 1985. Dynamics of the Late Wisconsin Ice Sheet in the Ungava Peninsula Interpreted from Geomorphological Evidence. Arctic and Alpine Research 17(3): 289-310. DOI: https://doi.org/10.1080/00040851.1985.12004037
Hamilton A.I., Gibbs A.E., Erikson L.H., Engelstad A.C., 2021. Assessment of Barrier Island Morphological Change in Northern Alaska. U.S. Geological Survey Open-File Report 2021-1074. DOI: https://doi.org/10.3133/ofr20211074
Haug F., Myhre P., 2016. Naturtyper på Svalbard- laguner og pollers betydning, med katalog over lokaliteter, Norsk Polarinstitutt, Tromsø.
Higman B., Shugar D.H., Stark C.P., Ekström G., Koppes M.N., Lynett P., Dufresne A., Haeussler P.J., Geertsema M., Gulick S., Mattox A., Venditti J.G., Walton M.A.L., McCall N., Mckittrick E., MacInnes B., Bilderback E.L., Tang H., Willis M.J., Richmond B., Reece R.S., Larsen C., Olson B., Capra J., Ayca A., Bloom C., Williams H., Bonno D., Weiss R., Keen A., Skanavis V., Loso M., 2018. The 2015 landslide and tsunami in Taan Fiord, Alaska. Scientific Reports 8(1). DOI: https://doi.org/10.1038/s41598-018-30475-w
Himmelstoss E.A., Henderson R.E., Kratzmann M.G., Farris A.S., 2021. Digital Shoreline Analysis System (DSAS) Version 5.1 User Guide. U.S. Geological Survey Open-File Report 2021-1091. DOI: https://doi.org/10.3133/ofr20211091
Hjort J., Karjalainen O., Aalto J., Westermann S., Romanovsky V.E., Nelson F.E., Etzelmüller B., Luoto M., 2018. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature Communications 9(1). DOI: https://doi.org/10.1038/s41467-018-07557-4
Hogan K.A., Dowdeswell J.A., Noormets R., Evans J., Cofaigh Ó.C., 2010. Evidence for full-glacial flow and retreat of the Late Weichselian Ice Sheet from the waters around Kong Karls Land, eastern Svalbard. Quaternary Science Reviews 29(25-26): 3563-3582. DOI: https://doi.org/10.1016/j.quascirev.2010.05.026
Hole G.M., Rawson T., Farnsworth W.R., Schomacker A., Ingólfsson Ó., Macias-Fauria M., 2021. A Driftwood-Based Record of Arctic Sea Ice During the Last 500 Years From Northern Svalbard Reveals Sea Ice Dynamics in the Arctic Ocean and Arctic Peripheral Seas. Journal of Geophysical Research: Oceans 126(10). DOI: https://doi.org/10.1029/2021JC017563
Hormes A., Akçar N., Kubik P.W., 2011. Cosmogenic radionuclide dating indicates ice-sheet configuration during MIS 2 on Nordaustlandet, Svalbard. Boreas 40(4): 636-649. DOI: https://doi.org/10.1111/j.1502-3885.2011.00215.x
Huss M., Hock R., 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change 8(2): 135-140. DOI: https://doi.org/10.1038/s41558-017-0049-x
Ingólfsson Ó., Landvik J.Y., 2013. The Svalbard-Barents Sea ice-sheet – Historical, current and future perspectives. Quaternary Science Reviews 64: 33-60. DOI: https://doi.org/10.1016/j.quascirev.2012.11.034
Irrgang A.M., Bendixen M., Farquharson L.M., Baranskaya A.V., Erikson L.H., Gibbs A.E., Ogorodov S.A., Overduin P.P., Lantuit H., Grigoriev M.N., Jones B.M., 2022. Drivers, dynamics and impacts of changing Arctic coasts. Nature Reviews Earth and Environment 3(1): 39-54. DOI: https://doi.org/10.1038/s43017-021-00232-1
Irrgang A.M., Lantuit H., Gordon R.R., Piskor A., Manson G.K., 2019. Impacts of past and future coastal changes on the Yukon coast — threats for cultural sites, infrastructure, and travel routes. Arctic Science 5(2): 107-126. DOI: https://doi.org/10.1139/as-2017-0041
Irrgang A.M., Lantuit H., Manson G.K., Günther F., Grosse G., Overduin P.P., 2018. Variability in Rates of Coastal Change Along the Yukon Coast, 1951 to 2015. Journal of Geophysical Research: Earth Surface 123(4): 779-800. DOI: https://doi.org/10.1002/2017JF004326
Isaksen K., Nordli O., Førland E.J., Łupikasza E., Eastwood S., Niedźwiedź T., 2016. Recent warming on Spitsbergen—Influence of atmospheric circulation and sea ice cover. Journal of Geophysical Research 121(20): 11913-11931. DOI: https://doi.org/10.1002/2016JD025606
Jackson M.G., Oskarsson N., Trønnes R.G., McManus J.F., Oppo D.W., Grönvold K., Hart S.R., Sachs J.P., 2005. Holocene loess deposition in Iceland: Evidence for millenial-scale atmosphere-ocean coupling in the North Atlantic. Geology 33(6): 509-512. DOI: https://doi.org/10.1130/G21489.1
Jahn A., 1961. Quantitative analysis of some periglacial processes in Spitsbergen. Zeszyty Naukowe Uniwersytetu Wrocławskiego, Nauka o Ziemi II/Geophysics, Geography, Geology II B(5): 3-54.
James T.S., Henton J.A., Leonard L.J., Darlington A., Forbes D.L., Craymer M., 2014. Relative Sea-level Projections in Canada and the Adjacent Mainland United States. Geological Survey of Canada Open File 7737. DOI: https://doi.org/10.4095/295574
Jarosz K., Zagórski P., Moskalik M., Lim M., Rodzik J., Mędrek K., 2022. A New Paraglacial Typology of High Arctic Coastal Systems: Application to Recherchefjorden, Svalbard. Annals of the American Association of Geographers 112(1): 184-205. DOI: https://doi.org/10.1080/24694452.2021.1898323
Jaskólski M.W., 2021. Challenges and perspectives for human activity in Arctic coastal environments – a review of selected interactions and problems. Miscellanea Geographica 25(2): 127-143. DOI: https://doi.org/10.2478/mgrsd-2020-0036
Jaskólski M.W., Pawłowski Ł., Strzelecki M., 2017. Assessment of geohazards and coastal change in abandoned Arctic town, Pyramiden, Svalbard. In Rachlewicz G. (ed.), Cryosphere reactions against the background of environmental changes in contrasting high-Arctic conditions in Svalbard. Bogucki Wydawnictwo Naukowe, Poznań: 51-64
Jones B.M., Arp C.D., Jorgenson M.T., Hinkel K.M., Schmutz J.A., Flint P.L., 2009. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters 36(3). DOI: https://doi.org/10.1029/2008GL036205
Jones B.M., Farquharson L.M., Baughman C.A., Buzard R.M., Arp C.D., Grosse G., Bull D.L., Günther F., Nitze I., Urban F., Kasper J.L., Frederick J.M., Thomas M., Jones C., Mota A., Dallimore S., Tweedie C., Maio C., Mann D.H., Richmond B., Gibbs A., Xiao M., Sachs T., Iwahana G., Kanevskiy M., Romanovsky V.E., 2018. A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic. Environmental Research Letters 13(11). DOI: https://doi.org/10.1088/1748-9326/aae471
Jones B.M., Irrgang A.M., Farquharson L.M., Lantuit H., Whalen D., Ogorodov S., Grigoriev M., Tweedie C., Gibbs A.E., Strzelecki M.C., Baranskaya A., Belova N., Sinitsyn A., Kroon A., Maslakov A., Vieira G., Grosse G., Overduin P., Nitze I., Maio C., Overbeck J., Bendixen M., Zagórski P., Romanovsky V.E., 2020. Arctic Report Card 2020. NOAA.
Kargel J., Bush A., Leonard G., 2013. Arctic Warming and Sea Ice Diminution Herald Changing Glacier and Cryospheric Hazard Regimes. Geophysical Research Abstracts.
Kavan J., Strzelecki M.C., 2023. Glacier decay boosts the formation of new Arctic coastal environments—Perspectives from Svalbard. Land Degradation and Development. DOI: https://doi.org/10.5194/egusphere-egu23-12412
Kavan J., Tallentire G.D., Demidionov M., Dudek J., Strzelecki M.C., 2022. Fifty Years of Tidewater Glacier Surface Elevation and Retreat Dynamics along the South-East Coast of Spitsbergen (Svalbard Archipelago). Remote Sensing 14(2). DOI: https://doi.org/10.3390/rs14020354
Khan N.S., Horton B.P., Engelhart S., Rovere A., Vacchi M., Ashe E.L., Törnqvist T.E., Dutton A., Hijma M.P., Shennan I., 2019. Inception of a global atlas of sea levels since the Last Glacial Maximum. Quaternary Science Reviews 220: 359-371. DOI: https://doi.org/10.1016/j.quascirev.2019.07.016
Kim Y.H., Min S.K., Gillett N.P., Notz D., Malinina E., 2023. Observationally-constrained projections of an ice-free Arctic even under a low emission scenario. Nature Communications 14(1). DOI: https://doi.org/10.1038/s41467-023-38511-8
Klemann V., Heim B., Bauch H.A., Wetterich S., Opel T., 2015. Sea-level evolution of the Laptev Sea and the East Siberian Sea since the last glacial maximum. Impact of glacial isostatic adjustment. Arktos 1(1). DOI: https://doi.org/10.1007/s41063-015-0004-x
Kochtitzky W., Copland L., 2022. Retreat of Northern Hemisphere Marine-Terminating Glaciers, 2000-2020. Geophysical Research Letters 49(3). DOI: https://doi.org/10.1029/2021GL096501
Korsgaard N.J., Svennevig K., Søndergaard A.S., Luetzenburg G., Oksman M., Larsen N.K., 2023. Giant mid-Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland. Natural Hazards and Earth Systems Sciences. DOI: https://doi.org/10.5194/nhess-2023-32
Kylander M.E., Martínez-Cortizas A., Sjöström J.K., Gåling J., Gyllencreutz R., Bindler R., Alexanderson H., Schenk F., Reinardy B.T.I., Chandler B.M.P., Gallagher K., 2023. Storm chasing: Tracking Holocene storminess in southern Sweden using mineral proxies from inland and coastal peat bogs. Quaternary Science Reviews 299. DOI: https://doi.org/10.1016/j.quascirev.2022.107854
Lajeunesse P., Allard M., 2002. Sedimentology of an ice-contact glaciomarine fan complex, Nastapoka Hills, eastern Hudson Bay, northern Quebec. Sedimentary Geology 152: 201-220. DOI: https://doi.org/10.1016/S0037-0738(02)00069-6
Lambeck K., Rouby H., Purcell A., Sun Y., Sambridge M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America 111(43): 15296-15303. DOI: https://doi.org/10.1073/pnas.1411762111
Lantuit H., Atkinson D., Overduin P.P., Grigoriev M., Rachold V., Grosse G., Hubberten H.W., 2011a. Coastal erosion dynamics on the permafrost-dominated Bykovsky Peninsula, north Siberia, 1951-2006. Polar Research 30(1). DOI: https://doi.org/10.3402/polar.v30i0.7341
Lantuit H., Overduin P.P., Couture N., Wetterich S., Aré F., Atkinson D., Brown J., Cherkashov G., Drozdov D., Forbes D.L., Graves-Gaylord A., Grigoriev M., Hubberten H.W., Jordan J., Jorgenson T., Ødegård R.S., Ogorodov S., Pollard W.H., Rachold V., Sedenko S., Solomon S., Steenhuisen F., Streletskaya I., Vasiliev A., 2011b. The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines. Estuaries and Coasts 35(2): 383-400. DOI: https://doi.org/10.1007/s12237-010-9362-6
Lantuit H., Pollard W.H., 2008. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 95(1-2): 84-102. DOI: https://doi.org/10.1016/j.geomorph.2006.07.040
Lantuit H., Pollard W.H., Couture N., Fritz M., Schirrmeister L., Meyer H., Hubberten H.W., 2012. Modern and Late Holocene Retrogressive Thaw Slump Activity on the Yukon Coastal Plain and Herschel Island, Yukon Territory, Canada. Permafrost and Periglacial Processes 23(1): 39-51. DOI: https://doi.org/10.1002/ppp.1731
Lavoie C., Allard M., Duhamel D., 2012. Deglaciation landforms and C-14 chronology of the Lac Guillaume-Delisle area, eastern Hudson Bay: A report on field evidence. Geomorphology 159-160: 142-155. DOI: https://doi.org/10.1016/j.geomorph.2012.03.015
Lecavalier B.S., Milne G.A., Simpson M.J.R., Wake L., Huybrechts P., Tarasov L., Kjeldsen K.K., Funder S., Long A.J., Woodroffe S., Dyke A.S., Larsen N.K., 2014. A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent. Quaternary Science Reviews 102: 54-84. DOI: https://doi.org/10.1016/j.quascirev.2014.07.018
Lee S., 2014. A theory for polar amplification from a general circulation perspective. Asia-Pacific Journal of Atmospheric Sciences 50(1): 31-43. DOI: https://doi.org/10.1007/s13143-014-0024-7
Lenton T.M., Held H., Kriegler E., Hall J.W., Lucht W., Rahmstorf S., Schellnhuber H.J., 2008. Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences 105(6): 1786-1793. Online: www.pnas.org/cgi/content/full/ (accessed 4 January 2024). DOI: https://doi.org/10.1073/pnas.0705414105
Lenton T.M., Rockström J., Gaffney O., Rahmstrof S., Richardson K., Steffen W., Schellnhuber H.J., 2019. Climate tipping points — too risky to bet against. Nature 575: 592-596. DOI: https://doi.org/10.1038/d41586-019-03595-0
Letham B., Martindale A., Waber N., Ames K.M., 2018. Archaeological Survey of Dynamic Coastal Landscapes and Paleoshorelines: Locating Early Holocene Sites in the Prince Rupert Harbour Area, British Columbia, Canada. Journal of Field Archaeology 43(3): 181-199. DOI: https://doi.org/10.1080/00934690.2018.1441575
Levermann A., 2011. When glacial giants roll over. Nature 472: 43-44. DOI: https://doi.org/10.1038/472043a
Lim M., Strzelecki M.C., Kasprzak M., Swirad Z.M., Webster C., Woodward J., Gjelten H., 2020. Arctic rock coast responses under a changing climate. Remote Sensing of Environment 236. DOI: https://doi.org/10.1016/j.rse.2019.111500
Long A.J., Roberts D.H., Dawson S., 2006. Early Holocene history of the west Greenland Ice Sheet and the GH-8.2 event. Quaternary Science Reviews 25(9-10): 904-922. DOI: https://doi.org/10.1016/j.quascirev.2005.07.002
Long A.J., Roberts D.H., Simpson M.J.R., Dawson S., Milne G.A., Huybrechts P., 2008. Late Weichselian relative sea-level changes and ice sheet history in southeast Greenland. Earth and Planetary Science Letters 272(1-2): 8-18. DOI: https://doi.org/10.1016/j.epsl.2008.03.042
Long A.J., Roberts D.H., Wright M.R., 1999. Isolation basin stratigraphy and Holocene relative sea-level change on Arveprinsen Ejland, Disko Bugt, West Greenland. Journal of Quaternary Science 14(4): 323-345. DOI: https://doi.org/10.1002/(SICI)1099-1417(199907)14:4<323::AID-JQS442>3.0.CO;2-0
Long A.J., Strzelecki M.C., Lloyd J.M., Bryant C.L., 2012. Dating High Arctic Holocene relative sea level changes using juvenile articulated marine shells in raised beaches. Quaternary Science Reviews 48: 61-66. DOI: https://doi.org/10.1016/j.quascirev.2012.06.009
Long A.J., Szczuciński W., Lawrence T., 2015. Sedimentary evidence for a mid-Holocene iceberg-generated tsunami in a coastal lake, west Greenland. Arktos 1(1). DOI: https://doi.org/10.1007/s41063-015-0007-7
Long A.J., Woodroffe S.A., Dawson S., Roberts D.H., Bryant C.L., 2009. Late Holocene relative sea level rise and the Neoglacial history of the Greenland Ice Sheet. Journal of Quaternary Science 24(4): 345-359. DOI: https://doi.org/10.1002/jqs.1235
Long A.J., Woodroffe S.A., Roberts D.H., Dawson S., 2011. Isolation basins, sea-level changes and the Holocene history of the Greenland Ice Sheet. Quaternary Science Reviews 30(27-28): 3748-3768. DOI: https://doi.org/10.1016/j.quascirev.2011.10.013
Luetzenburg G., Townsend D., Svennevig K., Bendixen M., Bjørk A.A., Eidam E.F., Kroon A., 2023. Sedimentary Coastal Cliff Erosion in Greenland. Journal of Geophysical Research: Earth Surface 128(4). DOI: https://doi.org/10.1029/2022JF007026
Lüthi M.P., Vieli A., 2016. Multi-method observation and analysis of a tsunami caused by glacier calving. Cryosphere 10(3): 995-1002. DOI: https://doi.org/10.5194/tc-10-995-2016
Macayeal D.R., Abbot D.S., Sergienko O.V., 2011. Iceberg-capsize tsunamigenesis. Annals of Glaciology 52(58): 51-56. DOI: https://doi.org/10.3189/172756411797252103
Macayeal D.R., Okal E.A., Aster R.C., Bassis J.N., 2009. Seismic observations of glaciogenic ocean waves (micro-tsunamis) on icebergs and ice shelves. Journal of Glaciology 55(190): 193-206. DOI: https://doi.org/10.3189/002214309788608679
Masson-Delmotte V., Swingedouw D., Landais A., Seidenkrantz M-S., Gauthier E., Bichet V., Massa C., Perren B., Jomelli V., Adalgeirsdottir G., Hesselbjerg Christensen J., Arneborg J., Bhatt U., Walker D.A., Elberling B., Gillet-Chaulet F., Ritz C., Gallée H., van den Broeke M., Fettweis X., de Vernal A., Vinther B., 2012. Greenland climate change: from the past to the future. Wiley Interdisciplinary Reviews: Climate Change 3(5): 427-449. DOI: https://doi.org/10.1002/wcc.186
Mccoll S.T., Davies T.R.H., Mcsaveney M.J., 2012. The effect of glaciation on the intensity of seismic ground motion. Earth Surface Processes and Landforms 37(12): 1290-1301. DOI: https://doi.org/10.1002/esp.3251
McCrystall M.R., Stroeve J., Serreze M., Forbes B.C., Screen J.A., 2021. New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nature Communications 12(1). DOI: https://doi.org/10.1038/s41467-021-27031-y
McFarlin J.M., Axford Y., Osburn M.R., Kelly M.A., Osterberg E.C., Farnsworth L.B., 2018. Pronounced summer warming in northwest Greenland during the Holocene and Last Interglacial. Proceedings of the National Academy of Sciences of the United States of America 115(25): 6357-6362. DOI: https://doi.org/10.1073/pnas.1720420115
Mercier D., Laffly D., 2005. Actual paraglacial progradation of the coastal zone in the Kongsfjorden area, western Spitsbergen (Svalbard). Geological Society Special Publication 242: 111-117. DOI: https://doi.org/10.1144/GSL.SP.2005.242.01.10
Moore J.C., Grinsted A., Zwinger T., Jevrejeva S., 2013. Semiempirical and process-based global sea level projections. Reviews of Geophysics 51(3): 484-522. DOI: https://doi.org/10.1002/rog.20015
Müller J., Werner K., Stein R., Fahl K., Moros M., Jansen E., 2012. Holocene cooling culminates in sea ice oscillations in Fram Strait. Quaternary Science Reviews 47: 1-14. DOI: https://doi.org/10.1016/j.quascirev.2012.04.024
Nettles M., Larsen T.B., Elósegui P., Hamilton G.S., Stearns L.A., Ahlstrøm A.P., Davis J.L., Andersen M.L., De Juan J., Khan S.A., Stenseng L., Ekström G., Forsberg R., 2008. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophysical Research Letters 35(24). DOI: https://doi.org/10.1029/2008GL036127
Nielsen D.M., Pieper P., Barkhordarian A., Overduin P., Ilyina T., Brovkin V., Baehr J., Dobrynin M., 2022. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nature Climate Change 12(3): 263-270. DOI: https://doi.org/10.1038/s41558-022-01281-0
Nielsen N., 1992. A boulder beach formed by waves from a calving glacier; Eqip Sermia, West Greenland. Boreas 21(2): 159-168. DOI: https://doi.org/10.1111/j.1502-3885.1992.tb00023.x
Nixon F.C., England J.H., Lajeunesse P., Hanson M.A., 2014. Deciphering patterns of postglacial sea level at the junction of the Laurentide and Innuitian Ice Sheets, western Canadian High Arctic. Quaternary Science Reviews 91: 165-183. DOI: https://doi.org/10.1016/j.quascirev.2013.07.005
Obu J., 2021. How Much of the Earth’s Surface is Underlain by Permafrost? Journal of Geophysical Research: Earth Surface 126(5). DOI: https://doi.org/10.1029/2021JF006123
Obu J., Lantuit H., Fritz M., Pollard W.H., Sachs T., Günther F., 2016. Relation between planimetric and volumetric measurements of permafrost coast erosion: A case study from Herschel Island, western Canadian Arctic. Polar Research 35(2016). DOI: https://doi.org/10.3402/polar.v35.30313
Obu J., Westermann S., Bartsch A., Berdnikov N., Christiansen H.H., Dashtseren A., Delaloye R., Elberling B., Etzelmüller B., Kholodov A., Khomutov A., Kääb A., Leibman M.O., Lewkowicz A.G., Panda S.K., Romanovsky V., Way R.G., Westergaard-Nielsen A., Wu T., Yamkhin J., Zou D., 2019. Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale. Earth-Science Reviews 193: 299-316. DOI: https://doi.org/10.1016/j.earscirev.2019.04.023
Ogorodov S., Aleksyutina D., Baranskaya A., Shabanova N., Shilova O., 2020. Coastal Erosion of the Russian Arctic: An Overview. Journal of Coastal Research (95): 599-604. DOI: https://doi.org/10.2112/SI95-117.1
Ogorodov S., Baranskaya A., Belova N.G., Kamalov A.M., Kuznetsov D.E., Overduin P.P., Shabanova N.N., Vergun A.P., 2016. Coastal dynamics of the Pechora and Kara Seas under changing climatic conditions and human disturbances. Geography, Environment, Sustainability 9(3): 53-73.
Ogorodov S., Baranskaya A., Shabanova N., Belova N., Bogatova D., Novikova A., Selyuzhenok V., 2022. Erosion of the Russian Arctic Coasts in Changing Environment. Proceedings of the 39th IAHR World Congress. DOI: https://doi.org/10.3850/IAHR-39WC2521711920221175
Osborne E., Richter-Menge J., Jeffries M., 2018. Arctic Report Card 2018: Effects of persistent Arctic warming continue to mount. Online: www.arctic.noaa.gov/Report-Card (accessed 3 January 2024).
Overduin P.P., Solomon S.M., James S., Manson G.K., Mcclelland J.W., Mueller D., Ødegård R., Ogorodov S., Proshutinsky A., Wetterich S., 2011. State of the Arctic Coast 2010 – A Thematic Assessment. International Arctic Science Committee, Land-Ocean Interactions in the Coastal Zone, Arctic Monitoring and Assessment Programme, International Permafrost Association. Helmholtz-Zentrum, Geesthacht, Germany. Online: arcticcoasts.org (accessed 4 January 2024).
Overduin P.P., Strzelecki M.C., Grigoriev M.N., Couture N., Lantuit H., St-Hilaire-Gravel D., Günther F., Wetterich S., 2014. Coastal changes in the Arctic. Geological Society Special Publication 388(1): 103-129. DOI: https://doi.org/10.1144/SP388.13
Overland J.E., Wang M., Walsh J.E., Stroeve J.C., 2014. Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future 2(2): 68-74. DOI: https://doi.org/10.1002/2013EF000162
Park H-S., Kim S-J., Stewart A.L., Son S-W., Seo K-H., 2019. Mid-Holocene Northern Hemisphere warming driven by Arctic amplification. Advancement of Science 5: 1-10. DOI: https://doi.org/10.1126/sciadv.aax8203
Patton H., Hubbard A., Andreassen K., Auriac A., Whitehouse P.L., Stroeven A.P., Shackleton C., Winsborrow M., Heyman J., Hall A.M., 2017. Deglaciation of the Eurasian ice sheet complex. Quaternary Science Reviews 169: 148-172. DOI: https://doi.org/10.1016/j.quascirev.2017.05.019
Pattyn F., Morlighem M., 2020. The uncertain future of the Antarctic Ice Sheet. Science 367: 1331-1335. DOI: https://doi.org/10.1126/science.aaz5487
Paxman G.J.G., Austermann J., Hollyday A., 2022. Total isostatic response to the complete unloading of the Greenland and Antarctic Ice Sheets. Scientific Reports 12(1). DOI: https://doi.org/10.1038/s41598-022-15440-y
Pedersen G.K., Larsen L.M., Pedersen K., Hjortkjaer F., 1998. The syn-volcanic Naajaat lake, Paleocene of West Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology 140: 271-287. DOI: https://doi.org/10.1016/S0031-0182(98)00034-0
Pedersen J.B.T., Kroon A., Jakobsen B.H., 2011. Holocene sea-level reconstruction in the Young Sound region, Northeast Greenland. Journal of Quaternary Science 26(2): 219-226. DOI: https://doi.org/10.1002/jqs.1449
Pedersen S.A.S., Larsen L.M., Dahl-Jensen T., Jepsen H.F., Pedersen G.K., Nielsen T., Pedersen A.K., von Platen-Hallermund F., Weng W., 2002. Tsunami-generating rock fall and landslide on the south coast of Nuussuaq, central West Greenland. Geology of Greenland Survey Bulletin 191: 73-93. DOI: https://doi.org/10.34194/ggub.v191.5131
Peltier W.R., 1974. The Impulse Response of a Maxwell Earth. Reviews of Geophysics and Space Physics 12(4): 641-669. DOI: https://doi.org/10.1029/RG012i004p00649
Prno J., Bradshaw B., Wandel J., Pearce T., Smit B., and Tozer L., 2011. Community vulnerability to climate change in the context of other exposure-sensitivities in Kugluktuk, Nunavut. Polar Research 30. DOI: https://doi.org/10.3402/polar.v30i0.7363
Rachlewicz G., 2009. River floods in glacier-covered catchments of the High Arctic: Billefjorden Wijdefjorden, Svalbard. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography 63: 115-122. DOI: https://doi.org/10.1080/00291950902907835
Rantanen M., Karpechko A.Y., Lipponen A., Nordling K., Hyvärinen O., Ruosteenoja K., Vihma T., Laaksonen A., 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth and Environment 3(1). DOI: https://doi.org/10.1038/s43247-022-00498-3
Rasch M., Jensen J.F., 1997. Ancient Eskimo dwelling sites and Holocene relative sea-level changes in southern Disko Bugt, central West Greenland. Polar Research 16(2): 101-115. DOI: https://doi.org/10.3402/polar.v16i2.6629
Reeh N., 1985. Long calving waves. Proceedings, 8th International Conference on Port and Ocean Engineering under Arctic Conditions: 1310-1327.
Rignot E., Velicogna I., Van Den Broeke M.R., Monaghan A., Lenaerts J., 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters 38(5). DOI: https://doi.org/10.1029/2011GL046583
Rolph R., Overduin P.P., Ravens T., Lantuit H., Langer M., 2022. ArcticBeach v1.0: A physics-based parameterization of pan-Arctic coastline erosion. Frontiers in Earth Science 10. DOI: https://doi.org/10.3389/feart.2022.962208
Rosser N., Jones E.V., Long A., Waugh S., Szczuciński W., Strzelecki M., 2015. Listening to the Arctic: A proof-of-concept study into short-term iceberg dynamics. Online: gef.nerc.ac.uk/reports.php (accessed 4 January 2024).
Sander L., Michaelis R., Papenmeier S., Pravkin S., Mollenhauer G., Grotheer H., Gentz T., Wiltshire K.H., 2019. Indication of Holocene sea-level stability in the southern Laptev Sea recorded by beach ridges in north-east Siberia, Russia. Polar Research 38. DOI: https://doi.org/10.33265/polar.v38.3379
Sander L., Michaelis R., Papenmeier S., Pravkin S., Wiltshire K.H., 2017. Characteristics of wave-built sedimentary archives in Buor Khaya Bay. Expeditions to Siberia 2017: 108-110.
Schiermeier Q., 2017. Huge landslide triggered rare Greenland mega-tsunami. Nature. DOI: https://doi.org/10.1038/nature.2017.22374
Screen J.A., Deser C., Simmonds I., Tomas R., 2014. Atmospheric impacts of Arctic sea-ice loss, 1979-2009: Separating forced change from atmospheric internal variability. Climate Dynamics 43(1): 333-344. DOI: https://doi.org/10.1007/s00382-013-1830-9
Serreze M.C., Barry R.G., 2011. Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change 77(1-2): 85-96. DOI: https://doi.org/10.1016/j.gloplacha.2011.03.004
Sessford E.G., Strzelecki M.C., Hormes A., 2015. Reconstruction of Holocene patterns of change in a High Arctic coastal landscape, Southern Sassenfjorden, Svalbard. Geomorphology 234: 98-107. DOI: https://doi.org/10.1016/j.geomorph.2014.12.046
Smith L.C., Stephenson S.R., 2013. New Trans-Arctic shipping routes navigable by midcentury. Proceedings of the National Academy of Sciences of the United States of America 110(13): 6-10. DOI: https://doi.org/10.1073/pnas.1214212110
Smith N., Sattineni A., 2016. Effect of Erosion in Alaskan Coastal Villages. 52nd ASC Annual International Conference Proceedings.
Sorrel P., Debret M., Billeaud I., Jaccard S.L., McManus J.F., Tessier B., 2012. Persistent non-solar forcing of Holocene storm dynamics in coastal sedimentary archives. Nature Geoscience 5(12): 892-896. DOI: https://doi.org/10.1038/ngeo1619
Sparrenbom C.J., Bennike O., Björck S., Lambeck K., 2006. Relative sea-level changes since 15 000 cal. yr BP in the Nanortalik area, southern Greenland. Journal of Quaternary Science 21(1): 29-48. DOI: https://doi.org/10.1002/jqs.940
Stankowski W., Grześ M., Karczewski A., Lankauf K., Rachlewicz G., Szczęsny R., Szczuciński W., Zagórski P., Ziaja W., 2013. Raised marine terraces on Spitsbergen. In: Zwoliński Zb., Kostrzewski A., Pulina M. (eds), Ancient and modern geoecosystems of Spitsbergen. Bogucki Wydawnictwo Naukowe, Poznań.
Stearns S.R., 1966. Permafrost (perennially frozen ground): U.S. Army Cold Regions Research and Engineering Laboratory. Cold Regions Science and Engineering 1.
Steffen R., Steffen H., Weiss R., Lecavalier B.S., Milne G.A., Woodroffe S.A., Bennike O., 2020. Early Holocene Greenland-ice mass loss likely triggered earthquakes and tsunami. Earth and Planetary Science Letters 546. DOI: https://doi.org/10.1016/j.epsl.2020.116443
St-Hilaire-Gravel D., Bell T.J., Forbes D.L., 2010. Raised Gravel Beaches as Proxy Indicators of Past Sea-Ice and Wave Conditions, Lowther Island, Canadian Arctic Archipelago. Arctic 63(2): 213-226. DOI: https://doi.org/10.14430/arctic976
Strzelecki M.C., 2011a. Cold shores in warming times – Current state and future challenges in high arctic coastal geomorphological studies. Quaestiones Geographicae 30(3): 101-113. DOI: https://doi.org/10.2478/v10117-011-0030-0
Strzelecki M.C., 2011b. Schmidt hammer tests across a recently deglacierized rocky coastal zone in Spitsbergen – is there a “coastal amplification” of rock weathering in polar climates? Polish Polar Research 32(3): 239-252. DOI: https://doi.org/10.2478/v10183-011-0017-5
Strzelecki M.C., Jaskólski M.W., 2020. Arctic tsunamis threaten coastal landscapes and communities -Survey of Karrat Isfjord 2017 tsunami effects in Nuugaatsiaq, western Greenland. Natural Hazards and Earth System Sciences 20(9): 2521-2534. DOI: https://doi.org/10.5194/nhess-20-2521-2020
Strzelecki M.C., Kasprzak M., Lim M., Swirad Z.M., Jaskólski M., Pawłowski Ł., Modzel P., 2017b. Cryo-conditioned rocky coast systems: A case study from Wilczekodden, Svalbard. Science of the Total Environment 607-608: 443-453. DOI: https://doi.org/10.1016/j.scitotenv.2017.07.009
Strzelecki M.C., Long A.J., Lloyd J.M., 2017a. Post-Little Ice Age Development of a High Arctic Paraglacial Beach Complex. Permafrost and Periglacial Processes.
Strzelecki M.C., Long A.J., Lloyd J.M., Małecki J., Zagórski P., Pawłowski Ł., Jaskólski M.W., 2018. The role of rapid glacier retreat and landscape transformation in controlling the post-Little Ice Age evolution of paraglacial coasts in central Spitsbergen (Billefjorden, Svalbard). Land Degradation and Development 29(6): 1962-1978. DOI: https://doi.org/10.1002/ldr.2923
Strzelecki M.C., Małecki J., Zagórski P., 2015. The Influence of Recent Deglaciation and Associated Sediment Flux on the Functioning of Polar Coastal Zone – Northern Petuniabukta, Svalbard. In: Maanan M., Robin M. (eds), Sediment fluxes on coastal areas. Coastal Research Library. DOI: https://doi.org/10.1007/978-94-017-9260-8_2
Strzelecki M.C., Szczuciński W., Dominiczak A., Zagórski P., Dudek J., Knight J., 2020. New fjords, new coasts, new landscapes: The geomorphology of paraglacial coasts formed after recent glacier retreat in Brepollen (Hornsund, southern Svalbard). Earth Surface Processes and Landforms 45(5): 1325-1334. DOI: https://doi.org/10.1002/esp.4819
Sumata H., de Steur L., Divine D.V., Granskog M.A., Gerland S., 2023. Regime shift in Arctic Ocean sea ice thickness. Nature 615(7952): 443-449. DOI: https://doi.org/10.1038/s41586-022-05686-x
Svendsen J.I., Alexanderson H., Astakhov V.I., Demidov I., Dowdeswell J.A., Funder S., Gataullin V., Henriksen M., Hjort C., Houmark-Nielsen M., Hubberten H.W., Ingólfsson Ó., Jakobsson M., Kjær K.H., Larsen E., Lokrantz H., Lunkka J.P., Lyså A., Mangerud J., Matiouchkov A., Murray A., Möller P., Niessen F., Nikolskaya O., Polyak L., Saarnisto M., Siegert C., Siegert M.J., Spielhagen R.F., Stein R., 2004. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23(11-13): 1229-1271. DOI: https://doi.org/10.1016/j.quascirev.2003.12.008
Svennevig K., Keiding M., Korsgaard N.J., Lucas A., Owen M., Poulsen M.D., Priebe J., Sørensen E.V., Morino C., 2023. Uncovering a 70-year-old permafrost degradation induced disaster in the Arctic, the 1952 Niiortuut landslide-tsunami in central West Greenland. Science of the Total Environment 859. DOI: https://doi.org/10.1016/j.scitotenv.2022.160110
Svennevig K., Solgaard A.M., Salehi S., Dahl-Jensen T., Merryman Boncori J.P., Larsen T.B., Voss P.H., 2019. A multidisciplinary approach to landslide monitoring in the Arctic: Case study of the March 2018 ML 1.9 seismic event near the Karrat 2017 landslide. Geological Survey of Denmark and Greenland Bulletin 43. DOI: https://doi.org/10.34194/GEUSB-201943-02-08
Tanguy R., Whalen D., Prates G., Vieira G., 2023. Shoreline change rates and land to sea sediment and soil organic carbon transfer in eastern Parry Peninsula from 1965 to 2020 (Amundsen Gulf, Canada). Arctic Science. DOI: https://doi.org/10.1139/AS-2022-0028
Thoman R.L., Richter-Menge J., Druckenmiller M.L., 2020. Arctic Report Card 2020.
Urbański J.A., Litwicka D., 2022. The decline of Svalbard land-fast sea ice extent as a result of climate change. Oceanologia 64(3): 535-545. DOI: https://doi.org/10.1016/j.oceano.2022.03.008
Vonk J.E., Sanchez-Garca L., Van Dongen B.E., Alling V., Kosmach D., Charkin A., Semiletov I.P., Dudarev O.V., Shakhova N., Roos P., Eglinton T.I., Andersson A., Gustafsson A., 2012. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489(7414): 137-140. DOI: https://doi.org/10.1038/nature11392
Wake L.M., Lecavalier B.S., Bevis M., 2016. Glacial Isostatic Adjustment (GIA) in Greenland: a Review. Current Climate Change Reports 2: 101-111. DOI: https://doi.org/10.1007/s40641-016-0040-z
Walter F., Olivieri M., Clinton J.F., 2013. Calving event detection by observation of seiche effects on the Greenland fjords. Journal of Glaciology 59(213): 162-178. DOI: https://doi.org/10.3189/2013JoG12J118
Wang J., Li D., Cao W., Lou X., Shi A., Zhang H., 2022. Remote Sensing Analysis of Erosion in Arctic Coastal Areas of Alaska and Eastern Siberia. Remote Sensing 14(3). DOI: https://doi.org/10.3390/rs14030589
Weidick A., Bennike O., 2007. Quaternary Glaciation History and Glaciology of Jakobshavn Isbrae and the Disko Bugt Region, West Greenland: A Review, Geological Survey of Denmark and Greenland 14: 1-78. DOI: https://doi.org/10.34194/geusb.v14.4985
Welch C., 2019. Climate change has finally caught up to this Alaska village. National Geographic. Online: www.nationalgeographic.com/science/article/climate-change-finally-caught-up-to-this-alaska-village?fbclid=IwAR3QrguHKctdqV1yeiPLXi5AOKPUk2veFIjwxqlBH_TKdCvR78quhytt6GQ (accessed 14 December 2023).
Whitehouse P.L., Allen M.B., Milne G.A., 2007. Glacial isostatic adjustment as a control on coastal processes: An example from the Siberian Arctic. Geology 35(8): 747-750. DOI: https://doi.org/10.1130/G23437A.1
Wieczorek I., Strzelecki M.C., Stachnik Ł., Yde J.C., Małecki J., 2023. Post-Little Ice Age glacial lake evolution in Svalbard: inventory of lake changes and lake types. Journal of Glaciology 69(277): 1449-1465. DOI: https://doi.org/10.1017/jog.2023.34
Wojtysiak K., Herman A., Moskalik M., 2018. Wind wave climate of west Spitsbergen: seasonal variability and extreme events. Oceanologia 60(3): 331-343. DOI: https://doi.org/10.1016/j.oceano.2018.01.002
Wołoszyn A., Owczarek Z., Wieczorek I., Kasprzak M., Strzelecki M.C., 2022. Glacial Outburst Floods Responsible for Major Environmental Shift in Arctic Coastal Catchment, Rekvedbukta, Albert I Land, Svalbard. Remote Sensing 14(24). DOI: https://doi.org/10.3390/rs14246325
Wolper J., Gao M., Lüthi M.P., Heller V., Vieli A., Jiang C., Gaume J., 2021. A glacier-ocean interaction model for tsunami genesis due to iceberg calving. Communications Earth and Environment 2(1). DOI: https://doi.org/10.1038/s43247-021-00179-7
Woodroffe S.A., Long A.J., 2013. SEA-LEVELS, LATE QUATERNARY | Late Quaternary Sea-Level Changes in Greenland. In: Scott A.E., Cary J.M. (eds), Encyclopedia of Quaternary Science. DOI: https://doi.org/10.1016/B978-0-444-53643-3.00144-8
Wu P., 2001. Postglacial induced surface motion and gravity in Laurentia for uniform mantle with power-law rheology and ambient tectonic stress. Earth and Planetary Science Letters 186: 427-435. DOI: https://doi.org/10.1016/S0012-821X(01)00258-8
Zagórski P., 2011. Shoreline dynamics of Calypsostranda (NW Wedel Jarlsberg Land, Svalbard) during the last century. Polish Polar Research 32(1): 67-99. DOI: https://doi.org/10.2478/v10183-011-0004-x
Zagórski P., Gajek G., Demczuk P., 2012. The influence of glacier systems of polar catchments on the functioning of the coastal zone (Recherchefjorden, Svalbard). Zeitschrift fur Geomorphologie 56: 101-121. DOI: https://doi.org/10.1127/0372-8854/2012/S-00075
Zagórski P., Jarosz K., Superson J., 2020. Integrated Assessment of Shoreline Change along the Calypsostranda (Svalbard) from Remote Sensing, Field Survey and GIS. Marine Geodesy, 43(5): 433-471. DOI: https://doi.org/10.1080/01490419.2020.1715516
Zagórski P., Rodzik J., Moskalik M., Strzelecki M.C., Lim M., Błaszczyk M., Promińska A., Kruszewski G., Styszyńska A., Malczewski A., 2015. Multidecadal (1960-2011) shoreline changes in Isbjørnhamna (Hornsund, Svalbard). Polish Polar Research 36(4): 369-390. DOI: https://doi.org/10.1515/popore-2015-0019
Zhang T., Li D., East A.E., Walling D.E., Lane S., Overeem I., Beylich A.A., Koppes M., Lu X., 2022. Warming-driven erosion and sediment transport in cold regions. Nature Reviews Earth & Environment. DOI: https://doi.org/10.5194/egusphere-egu23-1498
Ziaja W., Haska W., 2023. The newest Arctic islands and straits: Origin and distribution, 1997-2021. Land Degradation and Development. DOI: https://doi.org/10.1002/ldr.4583
Ziaja W., Maciejowski W., Ostafin K., 2009. Coastal landscape dynamics in ne Sørkapp land (SE Spitsbergen), 1900-2005. Ambio 38(4): 201-208. DOI: https://doi.org/10.1579/0044-7447-38.4.201
Ziaja W., Ostafin K., 2015. Landscape-seascape dynamics in the isthmus between Sørkapp Land and the rest of Spitsbergen: Will a new big Arctic island form? Ambio 44(4): 332-342. DOI: https://doi.org/10.1007/s13280-014-0572-1
Ziaja W., Ostafin K., 2019. Origin and location of new Arctic islands and straits due to glacial recession. Ambio 48(1): 25-34. DOI: https://doi.org/10.1007/s13280-018-1041-z
Ziaja W., Ostafin K., Maciejowski W., Kruse F., 2023. Coastal landscape degradation and disappearance of Davislaguna Lake, Sørkappland, Svalbard, 1900-2021. Land Degradation and Development. DOI: https://doi.org/10.1002/ldr.4765
License
Copyright (c) 2024 Zofia Owczarek, Zofia Stachowska-Kamińska, Oskar Kostrzewa, Małgorzata Szczypińska
This work is licensed under a Creative Commons Attribution 4.0 International License.