Abstract
Land cover change and its consequences such as environmental degradation and biodiversity loss pose significant global challenges, including in Nigeria’s Anambra River Basin. This study focuses on monitoring, predicting and understanding land cover changes in the basin from 1987 to 2018, with projections up to 2030. It explores the intricate relationship between population growth and land cover dynamics, aiming to contribute to sustainable land management practices and align with the Sustainable Development Goals (SDGs) for 2030. Using a combination of neural network classification and the CA-Markov model, the study analyses historical land cover data to identify significant transformations. Between 1987 and 2018, bare lands increased by 29%, vegetation increased by 14%, built-up areas increased by 128% and waterbodies increased by 10%, whereas there was a 58% decline in the extent of wetlands. The most significant transformation occurred in the wetlands, with a total of 1819.46 km2 being converted to various land cover types. The results demonstrate remarkable shifts characterised by rapid urbanisation, substantial wetland loss and a decline in vegetation cover. Expectedly, population growth is found to be closely linked to the expansion of built-up areas while negatively impacting other land cover types. These findings underscore the urgent need for sustainable land management strategies that balance the demands of growing populations with the preservation of natural ecosystems and biodiversity. Furthermore, the study provides future projections that offer crucial insights for decision-makers involved in land use planning, biodiversity conservation and sustainable development.
References
Akafor F.C., Obiezue R.N., 2004. Malacological survey of the freshwater systems of Anambra River Basin area in Anambra State, Nigeria. Bio-Research 2(1): 29-38. DOI: https://doi.org/10.4314/br.v2i1.28539
Al-Hameedi W.M.M., Chen J., Faichia C., Al-Shaibah B., Nath B., Kafy A.-A., Hu G., et al., 2021. Remote sensing-based urban sprawl modeling using multilayer perceptron neural network Markov chain in Baghdad, Iraq. Remote Sensing 13(20): 4034. MDPI AG. DOI: https://doi.org/10.3390/rs13204034
Al-Hameedi W.M.M., Chen J., Faichia C., Nath B., Al-Shaibah B., Al-Aizari A., 2022. Geospatial analysis of land use/cover change and land surface temperature for landscape risk pattern change evaluation of Baghdad City, Iraq, using CA-Markov and ANN models. Sustainability 14(14): 8568. DOI: https://doi.org/10.3390/su14148568
Anderson J.R., 1976. A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office, Washington DC, 28. DOI: https://doi.org/10.3133/pp964
Asenso Barnieh B., Jia L., Menenti M., Zhou J., Zeng Y., 2020. Mapping land use land cover transitions at different spatiotemporal scales in West Africa. Sustainability 12(20): 8565. DOI: https://doi.org/10.3390/su12208565
Assefa W.W., Eneyew B.G., Wondie A., 2021. The impacts of land-use and land-cover change on wetland ecosystem service values in peri-urban and urban area of Bahir Dar City, Upper Blue Nile Basin, Northwestern Ethiopia. Ecological Processes 10(1): 39. DOI: https://doi.org/10.1186/s13717-021-00310-8
Barbier E.B., 2021. The evolution of economic views on natural resource scarcity. Review of Environmental Economics and Policy 15(1): 24-44. DOI: https://doi.org/10.1086/712926
Beeson M., 2010. The coming of environmental authoritarianism. Environmental Politics 19(2): 276-294. DOI: https://doi.org/10.1080/09644010903576918
Benediktsson J.A., Sveinsson J.R., 2003. Multisource remote sensing data classification based on consensus and pruning. IEEE Transactions on Geoscience and Remote Sensing 41(4): 932-936. DOI: https://doi.org/10.1109/TGRS.2003.812000
Beroho M., Briak H., Cherif E.K., Boulahfa I., Ouallali A., Mrabet R., Kebede F., et al., 2023. Future scenarios of land use/land cover (LULC) based on a CA-Markov simulation model: Case of a Mediterranean watershed in Morocco. Remote Sensing 15(4): 1162. DOI: https://doi.org/10.3390/rs15041162
Biitir S.B., Nara B.B., 2016. The role of customary land secretariats in promoting good local land governance in Ghana. Land Use Policy 50: 528-536. DOI: https://doi.org/10.1016/j.landusepol.2015.10.024
Brody S.D., 2003. Implementing the principles of ecosystem management through local land use planning. Population and Environment 24: 511-540. DOI: https://doi.org/10.1023/A:1025078715216
Chamie J., 2022. Population levels, trends, and differentials. Springer, Cham: 149-152. DOI: https://doi.org/10.1007/978-3-031-22479-9_31
Chung L.L.W., 1994. The economics of land-use zoning: A literature review and analysis of the work of Coase. The Town Planning Review65(1): 77-98. DOI: https://doi.org/10.3828/tpr.65.1.j15rh7037v511127
Cochran W.G., 1977. Sampling Techniques. 3d ed. John Wiley & Sons, New York.
UN DESA, 2017. World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. UN DESA| United Nations Department of economic and social affairs.un.org.
El-Kawy O.A., Rød J.K., Ismail H.A., Suliman A.S., 2011. Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied Geography 31(2): 483-494. DOI: https://doi.org/10.1016/j.apgeog.2010.10.012
The state of the world’s biodiversity for food and agriculture. Food and Agriculture Organization of the United Nations. Online: www.fao.org/3/CA3129EN/CA3129EN.pdf (accessed 1 June 2023).
Frizzelle B.G., Moody A., 2001. Mapping continuous distributions of land cover: A comparison of maximum-likelihood estimation and artificial neural networks. Photogrammetric Engineering and Remote Sensing 67(6): 693-706.
Foley J.A., DeFries R., Asner G.P., Barford C., Bonan G., Carpenter S.R., Chapin F.S., Coe M.T., Daily G.C., Gibbs H.K., Helkowski J.H., Holloway T., Howard E.A., Kucharik C.J., Monfreda C., Patz J.A., Prentice I.C., Ramankutty N., Snyder P.K., 2005. Global consequences of land use. Science 309(5734): 570-574. DOI: https://doi.org/10.1126/science.1111772
Fu D., Wu X., Duan C., Guan Q., Huang N., 2018. Changes in functional structure characteristics mediate ecosystem functions during human-induced land-cover alteration: A case study in southwest China. Journal of Soil and Water Conservation 73(4): 461-468. DOI: https://doi.org/10.2489/jswc.73.4.461
Gashaw T., Tulu T., Argaw M., Worqlul A.W., 2017. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environmental Systems Research 6(1): 1-15. DOI: https://doi.org/10.1186/s40068-017-0094-5
George, M. V., Smith Population Projections. In J. S. Siegel and D. A. Swanson (Eds.), The methods and materials of demography (2nd ed, S. K., Swanson, D. A., and Tayman, J. (2004)., pp. 561-602). Elsevier Academic Press, USA. DOI: https://doi.org/10.1016/B978-012641955-9/50055-2
Girma R., Fürst C., Moges A., 2022. Land use land cover change modeling by integrating artificial neural network with cellular Automata-Markov chain model in Gidabo river basin, main Ethiopian rift. Environmental Challenges 6: 100419. DOI: https://doi.org/10.1016/j.envc.2021.100419
Gordon A., Simondson D., White M., Moilanen A., Bekessy S.A., 2009. Integrating conservation planning and landuse planning in urban landscapes. Landscape and Urban Planning 91(4): 183-194. DOI: https://doi.org/10.1016/j.landurbplan.2008.12.011
Halmy M.W.A., Gessler P.E., Hicke J.A., Salem B.B., 2015: Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using MarkovCA. – Applied Geography 63: 101-112. DOI: https://doi.org/10.1016/j.apgeog.2015.06.015
Herrmann S.M., Brandt M., Rasmussen K., Fensholt R., 2020. Accelerating land cover change in West Africa over four decades as population pressure increased. Communications Earth, Environment 1(1): 53. DOI: https://doi.org/10.1038/s43247-020-00053-y
Hossain M., 2015. Improving land administration and management in Bangladesh. Final Report. Bangladesh Institute of Development Studies (BIDS), Dhaka.
Hua A., 2017. Application of Ca-Markov model and land use/land cover changes in Malacca River Watershed, Malaysia. Applied Ecology and Environmental Research 15(4): 605-622. DOI: https://doi.org/10.15666/aeer/1504_605622
Huang W.Y., Daberkow S.G., 1996. The role of planting flexibility and the acreage reduction program in encouraging sustainable agriculture practices. Journal of Sustainable Agriculture 7(1): 63-79. DOI: https://doi.org/10.1300/J064v07n01_06
Imarhiagbe O., Egboduku W.O., Nwankwo B.J., 2020. A review of the biodiversity conservation status of Nigeria. Journal of Wildlife and Biodiversity 4(1): 73-83.
Jensen R.R., Binford M.W., 2004. Measurement and comparison of leaf area index estimators derived from satellite remote sensing techniques. International Journal of Remote Sensing 25(20): 4251-4265. DOI: https://doi.org/10.1080/01431160410001680400
Jensen, J.R. Im, J. Hardin, P and Jensen, R.R. (2009). Image classification. In The SAGE Handbook of Remote Sensing; Warner, T.A., Nellis, M.D., Foody, G.M., Eds.; SAGE Publications Ltd: London, UK 269-281. Li Z., Ma L., Gou D., Hong Q., Fai L., Xiong B., 2022. The impact of urban development on wetland conservation. Sustainability 14(21): 13747. DOI: https://doi.org/10.3390/su142113747
Mahtta R., Fragkias M., Güneralp B., Mahendra A., Reba M., Wentz E.A., Seto K.C., 2022. Urban land expansion: The role of population and economic growth for 300+ cities. Npj Urban Sustainability 2(1): 5. DOI: https://doi.org/10.1038/s42949-022-00048-y
Mamun A.A., Mahmood A., Rahman M., 2013. Identification and monitoring the change of land use pattern using remote sensing and GIS: A case study of Dhaka City. IOSR Journal of Mechanical and Civil Engineering 6(2): 20-28. DOI: https://doi.org/10.9790/1684-0622028
Metternicht G., 2017. Land use planning. Global Land Outlook (Working Paper).
Mertens B., Lambin E.F., 2000. Land-cover-change trajectories in southern Cameroon. Annals of the Association of American Geographers 90(3): 467-494. DOI: https://doi.org/10.1111/0004-5608.00205
Muchoney D., Williamson J., 2001. A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data. IEEE Transactions on Geoscience and Remote Sensing 39(9): 1969-1977. DOI: https://doi.org/10.1109/36.951087
Mugari E., Masundire H., 2022. Consistent changes in land-use/land-cover in semi-arid areas: Implications on ecosystem service delivery and adaptation in the Limpopo Basin, Botswana. Land 11(11): 2057. DOI: https://doi.org/10.3390/land11112057
Nath B., Wang Z., Ge Y., Islam K., Singh R.P., Niu Z., 2020. Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process. ISPRS International Journal of Geo-Information 9(2): 134. DOI: https://doi.org/10.3390/ijgi9020134
National Research Council, 2010. Toward sustainable agricultural systems in the 21st century. National Academies Press, Washington, D.C.
NBS [National Bureau of Statistics], 2023. National Bureau of Statistics. Online: www.nigerianstat.gov.ng/ (accessed 1 June 2023).
Nel V., 2016. A better zoning system for South Africa? Land Use Policy 55: 257-264. DOI: https://doi.org/10.1016/j.landusepol.2016.04.007
Nwani C.D., Ude E.F., 2005. Morphometric variations among three Distichodus species of Anambra River, Nigeria. Animal Research International 2(3): 372-376. DOI: https://doi.org/10.4314/ari.v2i3.40872
Nwilo P.C., Njar N.G., Inyang U.B., Okolie C.J., Daramola O.E., Orji M.J., Olanrewaju H.O., Akinnusi S.A., and Egogo-Stanley A.O., 2021. Monitoring and prediction of land cover change in the Anambra River Basin using neural network classification and Ca-Markov model. In: Proceedings of the 3rd Intercontinental Geoinformation Days (IGD), 78-81. Mersin, Turkey.
Ogoke K., 2023. Revitalizing South Eastern Nigeria’s agricultural sector: calls for technological support and data-driven industry. Online: www.linkedin.com/pulse/revitalizing-south-eastern-nigerias-agricultural-sector-kelechi-ogoke/ (accessed 20 October 2023).
Pontius R.G.Jr., Millones M., 2011. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing. 32(15): 4407-4429. DOI: https://doi.org/10.1080/01431161.2011.552923
Rani A., Gupta S.K., Singh S.K., Meraj G., Kumar P., Kanga S., Đurin B., et al., 2023. Predicting future land use utilizing economic and land surface parameters with ANN and Markov Chain models. Earth 4(3): 728-751. DOI: https://doi.org/10.3390/earth4030039
Sankarrao L., Ghose D.K., Rathinsamy M., 2021. Predicting land-use change: Intercomparison of different hybrid machine learning models. Environmental Modelling, Software 145: 105207. DOI: https://doi.org/10.1016/j.envsoft.2021.105207
Singh, V.P., Yadav, S., Yadav, K.K., Yadava, R.N. (2022). An Overview on Environmental Degradation and Mitigation. In: Singh, V.P., Yadav, S., Yadav, K.K., Yadava, R.N. (eds) Environmental Degradation: Challenges and Strategies for Mitigation. Water Science and Technology Library, vol 104. Springer, Cham. Switzerland. DOI: https://doi.org/10.1007/978-3-030-95542-7
Sola A.O., 2014. Environmental education and public awareness. Journal of Educational and Social Research 4(3): 333.
Tatem A.J., Lewis H.G., Atkinson P.M., Nixon M.S., 2001. Super-resolution target identification from remotely sensed images using a Hopfield neural network. IEEE Transactions on Geoscience and Remote Sensing 39(4) 781-796. DOI: https://doi.org/10.1109/36.917895
USGS [United States Geological Survey], 2023. EarthExplorer. Online: earthexplorer.usgs.gov (accessed 1 June 2023).
Wubie M.A., Assen M., Nicolau M.D., 2016. Patterns, causes and consequences of land use/cover dynamics in the Gumara watershed of Lake Tana basin, Northwestern Ethiopia. Environmental Systems Research 5(1): 1-12. DOI: https://doi.org/10.1186/s40068-016-0058-1
Ziegler E.H., 1993. Rathkopf’s the law of zoning and planning. Clark Boardman Callaghan, New York, NY.
License
Copyright (c) 2024 Nnanjar G. Njar, Chima J. Iheaturu, Utibe B. Inyang, Chukwuma J. Okolie, Olagoke E. Daramola, Michael J. Orji
This work is licensed under a Creative Commons Attribution 4.0 International License.