Social and geographical distribution of mobility-related greenhouse gas emissions in Poznań and Tri-city functional urban areas
PDF

Keywords

travel behaviour
greenhouse gas emissions
residential location
spatial analysis
long-distance travel
short-distance travel

How to Cite

Czepkiewicz, M., Brudka, C., Krysiński, D., & Schmidt, F. (2024). Social and geographical distribution of mobility-related greenhouse gas emissions in Poznań and Tri-city functional urban areas. Quaestiones Geographicae, 43(1), 235–255. https://doi.org/10.14746/quageo-2024-0014

Abstract

Mobility is an important source of greenhouse gas (GHG) emissions and a major contributor to human-induced climate change. Much of these emissions result from urban residents’ travel within urban areas (i.e. short-distance travel [SDT]) and away from them (i.e. long-distance travel [LDT]). In this study, we focus on the distribution of mobility-related GHG emissions in two functional urban areas in Poland: Poznań and the Tri-city. Using data from a representative survey (N ~2000 in each area), we investigate the emission distribution and associations between emission levels and the socio-economic characteristics and residential locations of study participants. Emission levels are unequally distributed: the top 10% of emitters contribute >50% of SDT and LDT emissions. People with high education and income levels tend to travel and emit more within and away from the cities. People of retirement age travel and emit much less than the younger people. SDT emission levels are clustered spatially and increase with the increasing distance from the main city centres and decreasing density. LDT emissions have only very weak or no association with residential location.

https://doi.org/10.14746/quageo-2024-0014
PDF

Funding

The study was conducted as part of the pro- ject 2020/37/B/HS4/03931 “Travel behaviour in Polish cities: causality, behavioural changes, and climate impacts” funded by the National Science Centre in Poland.

References

Aamaas B., Borken-Kleefeld J., Peters G.P., 2013. The climate impact of travel behavior: A German case study with illustrative mitigation options. Environmental Science & Policy 33: 273-282. DOI: https://doi.org/10.1016/j.envsci.2013.06.009

Aamaas B., Peters G.P., 2017. The climate impact of Norwegians’ travel behavior. Travel Behaviour and Society 6: 10-18. DOI: https://doi.org/10.1016/j.tbs.2016.04.001

Anselin L., 2020a. Global Spatial Autocorrelation: Visualizing Spatial Autocorrelation. Online: geodacenter.github.oi/workbook/5a_global_auto/lab5a.html#fn2 (accessed 18 July 2023).

Anselin L., 2020b. Local Spatial Autocorrelation: LISA and Local Moran. GeoDa: An Introduction to Spatial Data Science. Online: geodacenter.github.io/workbook/6a_local_auto/lab6a.html (accessed 31 July 2023).

Baltruszewicz M., Steinberger J.K., Paavola J., Ivanova D., Brand-Correa L.I., Owen A., 2023. Social outcomes of energy use in the United Kingdom: Household energy footprints and their links to well-being. Ecological Economics 205: 107686. DOI: https://doi.org/10.1016/j.ecolecon.2022.107686

Banister D., 2008. The sustainable mobility paradigm. Transport Policy, New Developments in Urban Transportation Planning 15: 73-80. DOI: https://doi.org/10.1016/j.tranpol.2007.10.005

Barla P., Miranda-Moreno L.F., Lee-Gosselin M., 2011. Urban travel CO2 emissions and land use: A case study for Quebec City. Transportation Research Part D: Transport and Environment 16: 423-428. DOI: https://doi.org/10.1016/j.trd.2011.03.005

Bel G., Rosell J., 2017. The impact of socioeconomic characteristics on CO2 emissions associated with urban mobility: Inequality across individuals. Energy Economics 64: 251-261. DOI: https://doi.org/10.1016/j.eneco.2017.04.002

Bohte W., Maat K., van Wee B., 2009. Measuring attitudes in research on residential self-selection and travel behaviour: A review of theories and empirical research. Transport Reviews 29: 325-357. DOI: https://doi.org/10.1080/01441640902808441

Booi H., Boterman W.R., 2020. Changing patterns in residential preferences for urban or suburban living of city dwellers. Journal of Housing and the Built Environment 35: 93-123. DOI: https://doi.org/10.1007/s10901-019-09678-8

Brand C., Dons E., Anaya-Boig E., Avila-Palencia I., Clark A., de Nazelle A., Gascon M., Gaupp-Berghausen M., Gerike R., Götschi T., Iacorossi F., Kahlmeier S., Laeremans M., Nieuwenhuijsen M.J., Pablo Orjuela J., Racioppi F., Raser E., Rojas-Rueda D., Standaert A., Stigell E., Sulikova S., Wegener S., Int Panis L., 2021. The climate change mitigation effects of daily active travel in cities. Transportation Research Part D: Transport and Environment 93: 102764. DOI: https://doi.org/10.1016/j.trd.2021.102764

Brand C., Preston J.M., 2010. ‘60-20 emission’—The unequal distribution of greenhouse gas emissions from personal, non-business travel in the UK. Transport Policy 17: 9-19. DOI: https://doi.org/10.1016/j.tranpol.2009.09.001

Bruderer Enzler H., 2017. Air travel for private purposes. An analysis of airport access, income and environmental concern in Switzerland. Journal of Transport Geography 61: 1-8. DOI: https://doi.org/10.1016/j.jtrangeo.2017.03.014

Büchs M., Mattioli G., 2021. Trends in air travel inequality in the UK: From the few to the many? Travel Behaviour and Society 25: 92-101. DOI: https://doi.org/10.1016/j.tbs.2021.05.008

Buchs M., Sylke S., 2013. Who emits most? Associations between socio-economic factors and UK households’ home energy, transport, indirect and total CO2 emissions. Ecological Economics 90: 114-123. DOI: https://doi.org/10.1016/j.ecolecon.2013.03.007

Buehler R., Nobis C., 2010. Travel behavior in aging societies: Comparison of Germany and the United States. Transportation Research Record 2182: 62-70. DOI: https://doi.org/10.3141/2182-09

Cao X. (Jason), Mokhtarian P.L., Handy S.L., 2009. Examining the impacts of residential self-selection on travel behaviour: A focus on empirical findings. Transport Reviews 29: 359-395. DOI: https://doi.org/10.1080/01441640802539195

CBOS, 2023. Wyjazdy turystyczne Polaków w 2022 roku i plany na rok 2023 (No. 19), Komunikat z badań. Centrum Badania Opinii Społecznej, Warszawa.

Center for Spatial Data Science at the University of Chicago, 2023. GeoDa. An Introduction to Spatial Data Science. Online: https://geodacenter.github.io/ (accessed 26 February 2024).

Christensen L., 2015. Demand for long distance travel – a fast increasing but scarcely documented travel activity. Illustrated by Danish travel behaviour and compared with the other European analyses, In: ETC Conference Papers 2015. Presented at the European Transport Conference 2015, Association for European Transport. 28-30 September 2015, Frankfurt, Germany.

Czepkiewicz M., Árnadóttir Á., Heinonen J., 2019. Flights dominate travel emissions of young urbanites. Sustainability 11: 6340. DOI: https://doi.org/10.3390/su11226340

Czepkiewicz M., Heinonen J., Naess P., Stefansdóttir H., 2020a. Who travels more, and why? A mixed-method study of urban dwellers’ leisure travel. Travel Behaviour and Society 19: 67-81. DOI: https://doi.org/10.1016/j.tbs.2019.12.001

Czepkiewicz M., Heinonen J., Ottelin J., 2018a. Why do urbanites travel more than do others? A review of associations between urban form and long-distance leisure travel. Environmental Research Letters 13: 073001. DOI: https://doi.org/10.1088/1748-9326/aac9d2

Czepkiewicz M., Jankowski P., Zwoliński Z., 2018b. Geo-Questionnaire: A spatially explicit method for eliciting public preferences, behavioural patterns, and local knowledge – an overview. Quaestiones Geographicae 37: 177-190. DOI: https://doi.org/10.2478/quageo-2018-0033

Czepkiewicz M., Klaas V., Heinonen J., 2020b. Compensation or cosmopolitan attitudes: Explaining leisure travel of Nordic urbanites. Travel Behaviour and Society 21: 167-187. DOI: https://doi.org/10.1016/j.tbs.2020.06.002

Czepkiewicz M., Ottelin J., Ala-Mantila S., Heinonen J., Hasanzadeh K., Kyttä M., 2018c. Urban structural and socioeconomic effects on local, national and international travel patterns and greenhouse gas emissions of young adults. Journal of Transport Geography 68: 130-141. DOI: https://doi.org/10.1016/j.jtrangeo.2018.02.008

Delbosc A., McDonald N., Stokes G., Lucas K., Circella G., Lee Y., 2019. Millennials in cities: Comparing travel behaviour trends across six case study regions. Cities 90: 1-14. DOI: https://doi.org/10.1016/j.cities.2019.01.023

Dillman K.J., Czepkiewicz M., Heinonen J., Fazeli R., Árnadóttir Á., Davíðsdóttir B., Shafiei E., 2021. Decarbonization scenarios for Reykjavik’s passenger transport: The combined effects of behavioural changes and technological developments. Sustainable Cities and Society 65: 102614. DOI: https://doi.org/10.1016/j.scs.2020.102614

Doll C., Brauer C., Köhler J., Scholten P, Schroten, A., Otten M., 2020. Methodology for GHG Efficiency of Transport Modes. Fraunhofer-Institute for Systems and Innovation Research ISI.

European Commission, 2021. EU transport in figures – Statistical pocketbook 2021, Mobility and Transport. European Union, Luxembourg.

Eurostat, 2021. Equivalised income. Statistics Explained: Glossary.

Ewing R., Cervero R., 2017. “Does compact development make people drive less?” The answer is yes. Journal of the American Planning Association 83: 19-25. DOI: https://doi.org/10.1080/01944363.2016.1245112

Ewing R., Cervero R., 2010. Travel and the built environment. Journal of the American Planning Association 76: 265-294. DOI: https://doi.org/10.1080/01944361003766766

Gössling S., Humpe A., 2020. The global scale, distribution and growth of aviation: Implications for climate change. Global Environmental Change 65: 102194. DOI: https://doi.org/10.1016/j.gloenvcha.2020.102194

GUS, 2019. Turystyka w 2018 r., Analizy statystyczne. Główny Urząd Statystyczny, Warszawa.

Handy S., 2017. Thoughts on the meaning of mark Stevens’s meta-analysis. Journal of the American Planning Association 83: 26-28. DOI: https://doi.org/10.1080/01944363.2016.1246379

Heinonen J., Czepkiewicz M., 2021. Cities, long-distance travel, and climate impacts. Urban Planning 6: 228-231. DOI: https://doi.org/10.17645/up.v6i2.4541

Hjorthol R.J., Levin L., Sirén A., 2010. Mobility in different generations of older persons. Journal of Transport Geography 18: 624-633. DOI: https://doi.org/10.1016/j.jtrangeo.2010.03.011

Hochstenbach C., Musterd S., 2018. Gentrification and the suburbanization of poverty: Changing urban geographies through boom and bust periods. Urban Geography 39: 26-53. DOI: https://doi.org/10.1080/02723638.2016.1276718

Holden E., Banister D., Gössling S., Gilpin G., Linnerud K., 2020. Grand narratives for sustainable mobility: A conceptual review. Energy Research & Social Science 65: 101454. DOI: https://doi.org/10.1016/j.erss.2020.101454

IATA, 2023. Annual Review 2023. International Air Transport Association, Istanbul, Türkiye.

IEA, 2023. Energy End-uses and Efficiency Indicators Data Explorer.

Ivanova D., Wood R., 2020. The unequal distribution of household carbon footprints in Europe and its link to sustainability. Global Sustainability 3: e18. DOI: https://doi.org/10.1017/sus.2020.12

Jakubowski A., Jarzębowicz L., Karwowski K., Wilk A., 2018. Analiza energochłonności pojazdu szybkiej kolei miejskiej z uwzględnieniem zmiennej sprawności napędu trakcyjnego. Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej 60: 33-36.

Jakubowski C., Ciszewski T., Nowakowski W., Wojciechowski J., 2016. Pomiar zużycia energii elektrycznej licznikami prądu stałego w wybranych zespołach trakcyjnych. Eksploatacja 12: 306-309.

Jing L., El-Houjeiri H.M., Monfort J.C., Littlefield J., Al-Qahtani A., Dixit Y., Speth R.L., Brandt A.R., Masnadi M.S., MacLean H.L., Peltier W., Gordon D., Bergerson J.A., 2022. Understanding variability in petroleum jet fuel life cycle greenhouse gas emissions to inform aviation decarbonization. Nature Communications 13: 7853. DOI: https://doi.org/10.1038/s41467-022-35392-1

Kamb A., Larsson J., 2019. Climate footprint from Swedish residents’ air travel. Chalmers University of Technology, Gothenburg.

Klöwer M., Allen M.R., Lee D.S., Proud S.R., Gallagher L., Skowron A., 2021. Quantifying aviation’s contribution to global warming. Environmental Research Letters. 16: 104027. DOI: https://doi.org/10.1088/1748-9326/ac286e

Knörr W., Hüttermann R., 2016. EcoPassenger environmental methodology and data update 2016. ifeu, Heidelberg/Hannover.

Ko J., Park D., Lim H., Hwang I.C., 2011. Who produces the most CO2 emissions for trips in the Seoul metropolis area? Transportation Research Part D: Transport and Environment 16: 358-364. DOI: https://doi.org/10.1016/j.trd.2011.02.001

KOBiZE, 2022. Wskaźniki emisyjności CO2, SO2, NOx, CO i pyłu całkowitego dla energii elektrycznej na podstawie informacji zawartych w Krajowej bazie o emisjach gazów cieplarnianych i innych substancji za 2021 rok. Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, Warszawa.

Krych A., 2019. Energochłonność jako kryterium optymalizacji miejskiego transportu publicznego. Transport Miejski i Regionalny nr 6: 10-18.

Lamb W.F., Wiedmann T., Pongratz J., Andrew R., Crippa M., Olivier J.G.J., Wiedenhofer D., Mattioli G., Khourdajie A.A., House J., Pachauri S., Figueroa M., Saheb Y., Slade R., Hubacek K., Sun L., Ribeiro S.K., Khennas S., de la Rue du Can S., Chapungu L., Davis S.J., Bashmakov I., Dai H., Dhakal S., Tan X., Geng Y., Gu B., Minx J., 2021. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters. 16: 073005. DOI: https://doi.org/10.1088/1748-9326/abee4e

Larsen F.D., Dalgaard L.S., Villumsen S., Holmberg V., Asgeirsson H., Larsen C.S., 2023. Travel demographics, patterns, and plans among adult Nordic travelers. IJID Regions 7: 136-142. DOI: https://doi.org/10.1016/j.ijregi.2023.03.002

Lee D.S., Fahey D.W., Skowron A., Allen M.R., Burkhardt U., Chen Q., Doherty S.J., Freeman S., Forster P.M., Fuglestvedt J., Gettelman A., De León R.R., Lim L.L., Lund M.T., Millar R.J., Owen B., Penner J.E., Pitari G., Prather M.J., Sausen R., Wilcox L.J., 2021. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment 244: 117834. DOI: https://doi.org/10.1016/j.atmosenv.2020.117834

Leroutier M., Quirion P., 2022. Air pollution and CO2 from daily mobility: Who emits and why? Evidence from Paris. Energy Economics 109: 105941. DOI: https://doi.org/10.1016/j.eneco.2022.105941

Lu J., 2023. The influencing mechanism of urban travel carbon emissions from the perspective of built environment: The case of Guangzhou, China. Atmosphere 14: 547. DOI: https://doi.org/10.3390/atmos14030547

Mantzos L., Matei N.A., Mulholland E., Rózsai M., Tamba M., Wiesenthal T., 2018. JRC-IDEES 2015. European Commission, Joint Research Centre (JRC).

Mattioli G., 2020. Towards a mobility biography approach to long-distance travel and mobility links, In: Mobility and travel behaviour across the life course. Edward Elgar Publishing, Cheltenham & Northampton: 82-99. DOI: https://doi.org/10.4337/9781789907810.00015

Mattioli G., Adeel M., 2021. Long-distance travel. In: International encyclopedia of transportation. Elsevier: 272-277. DOI: https://doi.org/10.1016/B978-0-08-102671-7.10695-5

Mattioli G., Morton C., Scheiner J., 2021. Air travel and urbanity: The role of migration, social networks, airport accessibility, and ‘rebound. Urban Planning 6: 232-245. DOI: https://doi.org/10.17645/up.v6i2.3983

Mattioli G., Scheiner J., Holz-Rau C., 2022. Generational differences, socialisation effects and ‘mobility links’ in international holiday travel. Journal of Transport Geography 98: 103263. DOI: https://doi.org/10.1016/j.jtrangeo.2021.103263

Naess P., 2020. Sustainable mobility, In: Jensen O.B., Lassen C., Kaufmann V., Freudendal-Pedersen M., Gøtzsche Lange I.S. (eds), Handbook of urban mobilities. Routledge International Handbooks, Routledge, Taylor & Francis, Abington & New York: 398-408.

Naess P., 2012. Urban form and travel behavior: Experience from a Nordic context. Journal of Transport and Land Use, 5: 21-45. DOI: https://doi.org/10.5198/jtlu.v5i2.314

Naess P., Strand A., Wolday F., Stefansdottir H., 2019. Residential location, commuting and non-work travel in two urban areas of different size and with different center structures. Progress in Planning 128: 1-36. DOI: https://doi.org/10.1016/j.progress.2017.10.002

Oswald Y., Owen A., Steinberger J.K., 2020. Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nature Energy 5: 231-239. DOI: https://doi.org/10.1038/s41560-020-0579-8

Prussi M., Yugo M., De Prada L., Padella M., Edwards R., Lonza L., 2020. JEC Well-to-Tank report v5, JRC Science for Policy Report. Publications Office of the European Union, Luxembourg.

Ritchie H., 2020. Cars, planes, trains: Where do CO2 emissions from transport come from? Our World in Data. Online: ourworldindata.org/co2-emissions-from-transport (accessed 3 December 2021).

Santos G., Maoh H., Potoglou D., von Brunn T., 2013. Factors influencing modal split of commuting journeys in medium-size European cities. Journal of Transport Geography 30: 127-137. DOI: https://doi.org/10.1016/j.jtrangeo.2013.04.005

Scarlat N., Prussi M., Padella M., 2022. Quantification of the carbon intensity of electricity produced and used in Europe. Applied Energy 305: 117901. DOI: https://doi.org/10.1016/j.apenergy.2021.117901

Schmidt F., Sidders A., Czepkiewicz M., Árnadóttir Á., 2023. I’m not a typical flyer: Narratives on the justified and excessive use of international flights in a highly mobile society. Journal of Sustainable Tourism. DOI: https://doi.org/10.1080/09669582.2023.2214344

Siren A., Haustein S., 2012. Cohort analysis of older adults’ travel patterns in Denmark. Online: www.transport.dtu.dk/ (accessed 18 January 2024).

Stevens M.R., 2017. Does compact development make people drive less? Journal of the American Planning Association 83: 7-18. DOI: https://doi.org/10.1080/01944363.2016.1240044

UTK, 2023. Przewozy pasażerskie. Dane eksploatacyjne. Urząd Transportu Kolejowego. Online: https://dane.utk.gov.pl/sts/przewozy-pasazerskie/dane-eksploatacyjne/21044,Przewozy-pasazerskie.html (accessed 12 June 2023)

Weiss M., Cloos K.C., Helmers E., 2020. Energy efficiency trade-offs in small to large electric vehicles. Environmental Science Europe 32: 46. DOI: https://doi.org/10.1186/s12302-020-00307-8

Wu X., Tao T., Cao J., Fan Y., Ramaswami A., 2019. Examining threshold effects of built environment elements on travel-related carbon-dioxide emissions. Transportation Research Part D: Transport & Environment 75: 1-12. DOI: https://doi.org/10.1016/j.trd.2019.08.018

Xiao Z., Lenzer J.H., Chai Y., 2017. Examining the uneven distribution of household travel carbon emissions within and across neighborhoods: The case of Beijing. Journal of Regional Science 57: 487-506. DOI: https://doi.org/10.1111/jors.12278

Zhao J., Peters A., Rickwood P., 2013. Socio-economic spatial characteristics and household transport greenhouse gas emissions: A Sydney case study, In: Australasian Transport Research Forum 2013 Proceedings. Presented at the Australasian Transport Research Forum 2013. 2-4 October 2013, Brisbane, Australia.