Erosion control ecosystem service provided by Salix acutifolia Willd. Neophyte on the South Baltic coast: Insights from Wolin Island, Poland
PDF

Keywords

biological invasion
cliff
coast protection
dune
nature conservation

How to Cite

Borysiak, J., Czyryca, P., & Stępniewska, M. (2024). Erosion control ecosystem service provided by Salix acutifolia Willd. Neophyte on the South Baltic coast: Insights from Wolin Island, Poland. Quaestiones Geographicae, 43(3), 5–19. https://doi.org/10.14746/quageo-2024-0023

Abstract

Further global warming is projected to increase coastal erosion. Therefore, coastal protection is being intensified with a strong emphasis placed on environmental biotechniques. One such activity is anti-erosion planting using alien plant species. The aliens penetrate from the plant species into the natural ecosystems, reducing their biodiversity and ecosystem services. Parallel to coastal protection, measures for nature conservation are undertaken to eliminate invasive aliens from the natural ecosystems that take over. Such actions are featured in the master plans drafted for the Natura 2000 sites on the south Baltic coast. Although there is no sufficient scientific evidence, Salix acutifolia willow used in anti-erosion plantings was considered a neophyte invading white and grey dune habitats and reducing their biodiversity. The master plans mandated the elimination of the willow without considering the role of its spontaneous locations in providing erosion-control services. In 2017–2023, research was undertaken on the south Baltic coast (Wolin Island) on the arguments behind such a radical conservation action. We present the results of these studies. We consider the elimination of S. acutifolia from its spontaneous locations as a reduction in both its erosion-control services and the willow’s role in nature conservation. We present some principles for action in case of a conflict between coast protection and nature conservation.

https://doi.org/10.14746/quageo-2024-0023
PDF

Funding

The research is a part of the project ‘Services provided by main types of ecosystems in Poland – an applied approach’ and received funding from Iceland, Liechtenstein and Norway within the EEA Financial Mechanism 2014–2021 and from the budget of Poland.

References

Act, 1991. Act of March 21, 1991 on maritime areas of Poland and maritime administration. J. Law 1991.32.131.

Act 2021. Act of August 11, 2021 on invasive species. J. Law 2021.1718.

Arias P.A., Belloui N., Coppola E., Jones R.G., Krinner G., Marotzke J., et al., 2021. Technical summary. In: Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., et al., (eds), Climate change 2021. The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 33-144.

Błaszczak E., 1979. Introduction of Salix acutifolia to dune formations using the vegetative propagation by laying the shoots horizontally. Library of Wolin National Park, Wolin (unpublished).

Borysiak J., 2022. Adaptacyjne strategie roślin naczyniowych klifu wybrzeża Bałtyku Południowego w Wolińskim Parku Narodowym. In: Kostrzewski A., Szpikowski J., Majewski M., (eds), Zintegrowany Monitoring Środowiska Przyrodniczego. Współczesne przemiany naturalne i antropogeniczne środowiska przyrodniczego zlewni rzecznych i jeziornych. Biblioteka Monitoringu Środowiska 32. Bogucki Wydawnictwo Naukowe, Poznań: 216-227. DOI: https://doi.org/10.12657/9788379864485-17

Borysiak J., Pleskot K., Rachlewicz G., 2020. Dryas aeolian landforms in Arctic deflationary tundra, central Spitsbergen. Polish Polar Research 41: 41-68. DOI: https://doi.org/10.24425/ppr.2020.132569

Borzyszkowski J., Grzegorczyk I., Walczak M., 2021. Pobrzeże Szczecińskie (313, 2-3). In: Richling A., Solon J., Macias A., Balon J., Borzyszkowski J., Kistowski M. (eds), Regionalna geografia fizyczna Polski. Bogucki Wydawnictwo Naukowe, Poznań: 71-85.

Charbonneau B.R., Wootton L.S., Wnek J.P., Langley J.A., Posner M.A., 2017. A species effect on storm erosion: Invasive sedge stabilized dunes more than native grass during hurricane sandy. Journal of Applied Ecology 54: 1385-1394. DOI: https://doi.org/10.1111/1365-2664.12846

El-Bana M.I., Nijs I., Khedr A.-H.A., 2003. The importance of phytogenic mounds (Nebkhas) for restoration of arid degraded rangelands in Northern Sinai. Restoration Ecology 11: 317-324. DOI: https://doi.org/10.1046/j.1526-100X.2003.00222.x

El-Bana M.I., Nijs I., Kockelbergh F., 2002. Microenvironmental and vegetational heterogeneity induced by phytogenic nebkhas in an arid coastal ecosystem. Plant and Soil 247: 283-293. DOI: https://doi.org/10.1023/A:1021548711206

EuroGeographics for the administrative boundaries, 2024. Administrative Units/ Statistical Units. Online: https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units (accessed 26 March 2024).

European Commission, 2011. Our life insurance, our natural capital: an EU biodiversity strategy to 2020. COM(2011) 244 final. Online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0244 (accessed 15 January 2024).

European Commission, 2021. EU biodiversity strategy for 2030 – Bringing nature back into our lives. Publications Office of the European Union. Online: https://data.europa.eu/doi/10.2779/677548 (accessed 15 January 2024).

European Environment Agency, 2019. The reference list on threats, pressures and activities is in accordance with the codelist. Online: https://cdr.eionet.europa.eu/help/natura2000 (accessed 15 January 2024).

Everard M., Jones L., Watts B., 2010. Have we neglected the societal importance of sand dunes? An ecosystem services perspective. Aquatic Conservation: Marine and Freshwater Ecosystems 20: 476-487. DOI: https://doi.org/10.1002/aqc.1114

Fałtynowicz W., 2018. Materials to the lichen biota of Western Pomerania (Northern Poland). Part. 3. Lichens along the shore of the Baltic Sea. Steciana 22: 143-152. DOI: https://doi.org/10.12657/steciana.022.017

Feagin R.A., Figlus J., Zinnert J.C., Sigren J., Martínez M.L., Silva R., et al., 2015. Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Frontiers in Ecology and the Environment 13: 203-210. DOI: https://doi.org/10.1890/140218

Gilbert M.E., Ripley B.S., 2010. Resolving the differences in plant burial responses. Austral Ecology 35: 53-59. DOI: https://doi.org/10.1111/j.1442-9993.2009.02011.x

Goudie A.S., 2022. Nebkhas: An essay in aeolian biogeomorphology. Aeolian Research 54: 100772. DOI: https://doi.org/10.1016/j.aeolia.2022.100772

Gracia A., Rangel-Buitrago N., Oakley J.A., Williams A.T., 2018. Use of ecosystems in coastal erosion management. Ocean & Coastal Management 156: 277-289. DOI: https://doi.org/10.1016/j.ocecoaman.2017.07.009

Hacker S.D., Zarnetske P., Seabloom E., Ruggiero P., Mull J., Gerrity Jones C., 2012. Subtle differences in two non-native congeneric beach grasses significantly affect their colonization, spread, and impact. Oikos 121: 138-148. DOI: https://doi.org/10.1111/j.1600-0706.2011.18887.x

Haines-Young R., Potschin M., 2018. Common International Classification of Ecosystem Services (CICES) V5.1. Guidance on the Application of the Revised Structure. Online: www.cices.eu (accessed 15 January 2024). DOI: https://doi.org/10.3897/oneeco.3.e27108

Hanley M.E., Hoggart S.P.G., Simmonds D.J., Bichot A., Colangelo M.A., Bozzeda F., et al., 2014. Shifting sands? Coastal protection by sand banks, beaches and dunes. Coastal Engineering 87: 136-146. DOI: https://doi.org/10.1016/j.coastaleng.2013.10.020

Hein L., van Koppen K., de Groot R.S., van Ierland E.C., 2006. Spatial scales, stakeholders and the valuation of ecosystem services. Ecological Economics 57: 209-228. DOI: https://doi.org/10.1016/j.ecolecon.2005.04.005

Herbich J., 2004 (Ed.). Poradniki ochrony siedlisk i gatunków Natura 2000 – podręcznik metodyczny, 1-3, 5. Online: https://natura2000.gdos.gov.pl/wytyczne-i-poradniki (accessed 15 January 2024).

Herbich J., Warzocha J., 1998. Introduction to the marine and coastal environment of Poland. Red List of Marine and Coastal Biotopes and Biotopes Complexes of the Baltic Sea, Belt Sea and Kattegat. Baltic Sea Environment Proceedings 75: 47-51.

Hojan M., 2009. Aeolian processes on the cliffs of Wolin Island. Quaestiones Geographicae 28A: 39-46.

IPCC, 2021. Summary for policymakers. In: Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., et al., (eds), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 3-32.

Keijsers J.G.S., De Groot A.V., Riksen M.J.P.M., 2015. Vegetation and sedimentation on coastal foredunes. Geomorphology 228: 723-734. DOI: https://doi.org/10.1016/j.geomorph.2014.10.027

Kostrzewski A., Zwoliński Z., Winowski M., Tylkowski J., Samołyk M., 2015. Cliff top recession rate and cliff hazards for the sea coast of Wolin Island (Sounthern Baltic). Baltica 28(2): 109-120. DOI: https://doi.org/10.5200/baltica.2015.28.10

Łabuz T.A., 2013. Polish coastal dunes – affecting factors and morphology. Landform Analysis 22: 33-59. DOI: https://doi.org/10.12657/landfana.022.004

Łabuz T.A., Grunewald R., Bobykina V., Chubarenko B.V., Česnulevičius A., Bautrėnas A., et al., 2018. Coastal dunes of the Baltic Sea shores: A review. Quaestiones Geographicae 37: 47-71. DOI: https://doi.org/10.2478/quageo-2018-0005

Lavaine C., Evette A., Piégay H., 2015. European Tamaricaceae in bioengineering on dry soils. Environmental Management 56: 221-232. DOI: https://doi.org/10.1007/s00267-015-0499-8

Li J., Zhao C., Zhu H., Li Y., Wang F., 2007. Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar Basin, China. Journal of Arid Environments 71: 350-361. DOI: https://doi.org/10.1016/j.jaridenv.2007.03.015

Łukasiewicz A., 1962. Morfologiczno-rozwojowe typy bylin (Morphological and developmental types of perennial). Prace Komisji Biologicznej 27. Państwowe Wydawnictwo Naukowe, Poznań.

Matuszkiewicz W., 2022. Przewodnik do oznaczania zbiorowisk roślinnych Polski (A manual to identifying plant communities in Poland). Wydawnictwo Naukowe PWN, Warszawa.

Mentaschi L., Vousdoukas M.I., Pekel J.F., Voukouvalas E., Feyen L., 2018. Global long-term observations of coastal erosion and accretion. Scientific Reports 8: 12876. DOI: https://doi.org/10.1038/s41598-018-30904-w

Mirek Z., Piękoś-Mirkowa H., Zając A., Zając M., 2020. Vascular plants of Poland: An annotated checklist. Szafer Institute of Botany, Polish Academy of Science, Kraków.

Mycielska-Dowgiałło E., Dłużewski M., Dubis L., Woronko B., 2008. Extorted forms of aeolian accumulation in the Coude du Dra Region. Prace Geograficzne 118: 65-78.

Nordstrom K.F., 2000. Beaches and dunes of development coasts. Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/CBO9780511549519

Olšauskas A.M., 2009. Woody and grassy vegetation development in different landscape elements of the Curonian Spit. Environmental Research, Engineering and Management 4: 30-36. DOI: https://doi.org/10.15544/RD.2009.2.029

OpenStreetMap Contributors, 2024. OpenStreetMap Data. Online: https://www.openstreetmap.org/ (accessed 26 March 2024).

Pool M.R., Pool S.K., Parvaneh I., Dehghani Z., Rostamian M., 2013. Nebkhas of Salvadora persica and their effect on the growth and survival of Prosopis cineraria, Tamarix aphylla, and Capparis decidua trees and shrubs. Flora 208: 502-507. DOI: https://doi.org/10.1016/j.flora.2013.07.010

Popiela A., Łysko A., Sotek Z., Ziarnek K., 2015. Preliminary results of studies on the distribution of invasive alien vascular plant species occurring in semi-natural and natural habitats in NW Poland. Biodiversity: Research and Conservation 37: 21-35. DOI: https://doi.org/10.1515/biorc-2015-0003

Pruszak Z., Zawadzka E., 2008. Potential implications of sea-level rise for Poland. Journal of Coastal Research 24: 410-422. DOI: https://doi.org/10.2112/07A-0014.1

Quets J.J., Temmerman S., El-Bana M.I., Al-Rowaily S.L., Assaeed A.M., Nijs I., 2013. Unraveling landscapes with phytogenic mounds (nebkhas): An exploration of spatial pattern. Acta Oecologica 49: 53-63. DOI: https://doi.org/10.1016/j.actao.2013.03.002

Rahmanov O., Skreczko S., Rahmonov M., 2021. Changes in soil features and phytomass during vegetation succession in sandy areas. Land 10: 265. DOI: https://doi.org/10.3390/land10030265

Rahmanov O., Snytko V.A., Szczypek T., 2009. Formation of phytogenic hillocks in Southern Poland. Geography and Natural Resources 30: 399-402. DOI: https://doi.org/10.1016/j.gnr.2009.11.017

Rahmonov O., Rzetala M., Rahmonov M., Kozyreva E., Jagus A., Rzetala M., 2011. The formation of soil chemistry and the development of fertility islands under plant canopies in sandy areas. Research Journal of Chemistry and Environment 15: 823-829.

Regulation 2014. Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. OJ L 317, 4.11.2014, 35-55.

Regulation, 2016. Regulation No. 4 of the Director of the Maritime Office in Szczecin of August 3, 2016 amending the ordinance on defining the limits of the technical belt in the Międzyzdroje commune. Online: http://e-dziennik.szczecin.uw.gov.pl/WDU_Z/2016/3173/oryginal/akt.pdf (accessed 15 January 2024).

Schernewski G., Voeckler L.N., Lambrecht L., Robbe E., Schumacher J., 2022. Building with nature—ecosystem service assessment of coastal-protection scenarios. Sustainability 14: 15737. DOI: https://doi.org/10.3390/su142315737

Science, 2015. Science for Environment Policy. Ecosystem Services and the Environment. In-depth Report 11 produced for the European Commission, DG Environment by the Science Communication Unit, UWE, Bristol. Online: http://ec.europa.eu/science-environment-policy (accessed 15 January 2024).

Seneta W., Dolatowski J., Zieliński J., 2021. Dendrologia. Wydawnictwo Naukowe PWN, Warszawa. DOI: https://doi.org/10.53271/2021.025

Tylkowski J., Paluszkiewicz R., Winowski M., Czyryca P., Kostrzewski A., Mazurek M., Rachlewicz G. 2023a. Effects of geomorphological processes and phytoclimate conditions change on forest vegetation in the Pomeranian Bay coastal zone (Wolin National Park, West Pomerania). Quaestiones Geographicae 42: 141-160. DOI: https://doi.org/10.14746/quageo-2023-0010

Tylkowski J., Czyryca P., Winowski M., Kostrzewski A., 2023b. Raport z realizacji programu badawczo-pomiarowego ZMŚP w Stacji Bazowej Wolin w 2022 roku. Uniwersytet im. A. Mickiewicza w Poznaniu, Stacja Monitoringu Środowiska Przyrodniczego w Białej Górze.

Tylkowski J., Samołyk M., Czyryca P., Winowski M., 2018. Raport z realizacji programu badawczo-pomiarowego ZMŚP w Stacji Bazowej Wolin w 2017 roku. Uniwersytet im. A. Mickiewicza w Poznaniu, Stacja Monitoringu Środowiska Przyrodniczego w Białej Górze.

Tylkowski J., Winowski M., Hojan M., Czyryca P., Samołyk M., 2021. Influence of hydrometeorological hazards and sea coast morphodynamics on development of Cephalanthero rubrae-Fagetum (Wolin Island, the Southern Baltic Sea). Natural Hazards and Earth System Sciences 21: 363-374. DOI: https://doi.org/10.5194/nhess-21-363-2021

Van der Biest K., De Nocker L., Provoost S., Boerema A., Staes J., Meire P., 2017. Dune dynamics safeguard ecosystem services. Ocean & Coastal Management 149: 148-158. DOI: https://doi.org/10.1016/j.ocecoaman.2017.10.005

Wang X., Wang T., Dong Z., Liu X., Qian G., 2006. Nebkha development and its significance to wind erosion and land degradation in semi-arid northern China. Journal of Arid Environments 65: 129-141. DOI: https://doi.org/10.1016/j.jaridenv.2005.06.030

Weeda E.J., 2010. The role of archaeophytes and neophytes in the Dutch coastal dunes. Journal of Coastal Conservation 14: 75-79. DOI: https://doi.org/10.1007/s11852-009-0079-2

Winowski M., Tylkowski J., Hojan M., 2022. Assessment of moraine cliff spatio-temporal erosion on Wolin Island using ALS data analysis. Remote Sensing 14: 3115. DOI: https://doi.org/10.3390/rs14133115

Yang H., Li X., Liu L., Gao Y., Li G., Jia R., 2014. Soil water repellency and influencing factors of Nitraria tangutorum nebkhas at different succession stages. Journal of Arid Land 6: 300-310. DOI: https://doi.org/10.1007/s40333-013-0199-2

Zhang P., Yang J., Zhao L., Bao S., Song B., 2011. Effect of Caragana tibetica nebkhas on sand entrapment and fertile islands in steppe-desert ecotones on the Inner Mongolia Plateau, China. Plant Soil 347: 79-90. DOI: https://doi.org/10.1007/s11104-011-0813-z

Zhao M., Zhan K.J., Qiu G.Y., Fang E.T., Yang Z.H., Zhang Y.C., Li A.D., 2011. Experimental investigation of the height profile of sand-dust fluxes in the 0-50-m layer and the effects of vegetation on dust reduction. Environmental Earth Science 62: 403-410. DOI: https://doi.org/10.1007/s12665-010-0535-1

Zhou H., Zhao W.Z., Luo W.C., 2015. Species diversity and vegetation distribution in nebkhas of Nitraria tangutorum in the desert steppes of China. Ecological Research 30: 735-744. DOI: https://doi.org/10.1007/s11284-015-1277-z

Ziarnek K., Ziarnek M., 2013. Draft conservation plan 2014-2033 for Wolin National Park. Directorate of Wolin National Park, Wolin (unpublished).

Žilinskas G., 2008. Distinguishing priority sectors for the Lithuanian Baltic Sea coastal management. Baltica 21: 85-94.