Abstract
The frequency of snowfall and rainfall is expected to change due to the warming climate. However, trends in liquid and solid phases are not linearly related to air temperature trends. This paper discusses the impact of thermal properties of circulation types (CTs) on the trends in snowy and rainy days in Poland in the period 1966–2020. The visual observations from 42 synoptic stations, which constitute the most-reliable information on precipitation type, were used to identify the precipitation phase. In most CTs, the air temperature increased between 1966–1985 and 2001–2020, but at various rates depending on the type of circulation. Positive tendencies in the thermal properties of CTs contributed to decreasing trends in winter snowfall and increasing trends in winter rainfall. The rate of tendencies in the probability of the precipitation phases depended on the average temperature and the intensity of warming, in particular CTs. In winter, both the snowfall and rainfall tendencies were the strongest for those CTs with average air temperatures (ATs) close to the freezing point, particularly when the average had crossed that threshold between the years 1966–1985 and 2001–2020. The most rapid tendencies in winter snowfall and rainfall, and in the spring mixed phase were induced by N and NW air advection under cyclonic conditions, bringing air from the rapidly warming Arctic. No trends in the winter mixed precipitation probability resulted from its various tendencies in particular CTs. The probability of snowfall increased during air advection from the southeastern sector, particularly in winter.
Funding
The results presented in this paper were achieved within Project No. 2017/27/B/ST10/ 00923, ‘Snowfall and rain response to current climate change and atmospheric circulation in Europe’, financed by the Polish National Science Centre.
References
Andersson T., Gustafsson N., 1994. Coast of departure and coast of arrival: Two important concepts for the formation and structure of convective snow bands over sea and lakes. Monthly Weather Review 122: 1036-1049. DOI: https://doi.org/10.1175/1520-0493(1994)122<1036:CODACO>2.0.CO;2
Baltaci H., Arslan H., Akkoyunlu B.O., Gomes H.B., 2020. Long-term variability and trends of extended winter snowfall in Turkey and the role of teleconnection patterns. Meteorological Applications 27: e1891. DOI: https://doi.org/10.1002/met.1891
Barnes E.A., Dunn-Sigouin E., Masato G., Woollings T., 2014. Exploring recent trends in Northern Hemisphere blocking. Geophysical Research Letters 41: 638-644. DOI: https://doi.org/10.1002/2013GL058745
Barnett T.P., Dumenil L., Schlese U., Roeckner E., Latif M., 1989. The effect of Eurasian snow cover on regional and global climate variations. Journal of Atmospheric Sciences 46: 661-685. DOI: https://doi.org/10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2
Bednorz E., 2008. Synoptic reasons for heavy snowfalls in the Polish-German lowlands. Theoretical and Applied Climatology 92: 133-140. DOI: https://doi.org/10.1007/s00704-007-0322-4
Bednorz E. 2011. Occurrence of winter air temperature extremes in Central Spitsbergen. Theoretical and Applied Climatology 106: 547-556. DOI: https://doi.org/10.1007/s00704-011-0423-y
Bednorz E., 2013. Heavy snow in Polish-German lowlands – Large-scale synoptic reasons and economic impacts. Weather and Climate Extremes 2: 1-6. DOI: https://doi.org/10.1016/j.wace.2013.10.007
Bednorz E., Wibig J., 2016. Spatial distribution and synoptic conditions of snow accumulation in the Russian Arctic. Polar Research 35: 25916. DOI: https://doi.org/10.3402/polar.v35.25916
Bednorz E., Wibig J., 2017. Circulation patterns governing October snowfalls in southern Siberia. Theoretical and Applied Climatology 128: 129-139. DOI: https://doi.org/10.1007/s00704-015-1696-3
Bednorz, E., Czernecki, B., Tomczyk, A.M., 2022. Climatology and extreme cases of sea-effect snowfall on the southern Baltic Sea coast. International Journal of Climatology 42: 5520-5534. DOI: https://doi.org/10.1002/joc.7546
Beniston M., Farinotti D., Stoffel M., Andreassen L.M., Coppola E., Eckert N., Fantini A., Giacona F., Hauck C., Huss M., Huwald H., Lehning M., López-Moreno J.-I., Magnusson J., Marty C., Morán-Tejéda E., Morin S., Naaim M., Provenzale A., Rabatel A., Six D., Stötter J., Strasser U., Terzago S., Vincent C., 2018. The European mountain cryosphere: A review of its current state, trends, and future challenges. The Cryosphere 12: 759-794. DOI: https://doi.org/10.5194/tc-12-759-2018
Bintanja R., 2018. The impact of Arctic warming on increased rainfall. Scientific Reports 8: 16001. DOI: https://doi.org/10.1038/s41598-018-34450-3
Buehler T., Raible C.C., Stocker T.F., 2011. The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus A 63: 212-222. DOI: https://doi.org/10.1111/j.1600-0870.2011.00511.x
Cattiaux J., Douville H., Ribes A., Chauvin F., Plante C., 2012. Towards a better understanding of wintertime cold extremes over Europe: A pilot study with CNRM and IPSL atmospheric models. Climate Dynamics 40: 433-2445. DOI: https://doi.org/10.1007/s00382-012-1436-7
Cohen J., Entekhabi D., 2001. The influence of snow cover on Northern Hemisphere climate variability. Atmosphere-Ocean 39: 35-53. DOI: https://doi.org/10.1080/07055900.2001.9649665
D’Errico M., Pons F., Yiou P., Tao S., Nardini C., Lunkeit F., Faranda D., 2022. Present and future synoptic circulation patterns associated with cold and snowy spells over Italy. Earth System Dynamics 13: 961-992. DOI: https://doi.org/10.5194/esd-13-961-2022
Dafis S., Lolis C.J., Houssos E.E., Bartzokas A., 2015. The atmospheric circulation characteristics favouring snowfall in an area with complex relief in Northwestern Greece. International Journal of Climatology 36: 3561-3577. DOI: https://doi.org/10.1002/joc.4576
Davis R.E., Lowit M.B., Knappenberger P.C., 1999. A climatology of snowfall-temperature relationships in Canada. Journal of Geophysical Research Atmospheres 1014: 11985-11994. DOI: https://doi.org/10.1029/1999JD900104
de Pablo Dávila F., Rivas Soriano L.J., Mora García M., González-Zamora A., 2021. Characterization of snowfall events in the northern Iberian Peninsula and the synoptic classification of heavy episodes (1988-2018). International Journal of Climatology 41: 699-713. DOI: https://doi.org/10.1002/joc.6646
Deng H., Pepin N.C., Chen Y., 2017. Changes of snowfall under warming in the Tibetan Plateau. Journal of Geophysical Research: Atmospheres 122: 7323-7341. DOI: https://doi.org/10.1002/2017JD026524
Diodato N., Bellocchi G., 2020. Climate control on snowfall days in peninsular Italy. Theoretical and Applied Climatology 140: 951-961. DOI: https://doi.org/10.1007/s00704-020-03136-0
Falarz, M., 2007. Snow cover variability in Poland in relation to the macro- and mesoscale atmospheric circulation in the twentieth century. International Journal of Climatology 27: 2069-2081. DOI: https://doi.org/10.1002/joc.1505
Faranda D., 2020. An attempt to explain recent changes in European snowfall extremes. Weather and Climate Dynamics 1: 445-458. DOI: https://doi.org/10.5194/wcd-1-445-2020
Farukh M.A., Yamada T.J., 2014. Synoptic climatology associated with extreme snowfall events in Sapporo city of northern Japan. Atmospheric Science Letters 15: 259-265. DOI: https://doi.org/10.1002/asl2.497
Feng S., Hu Q., 2007. Changes in winter snowfall/precipitation ratio in the contiguous United States. Journal of Geophysical Research: Atmospheres 112: D15109. DOI: https://doi.org/10.1029/2007JD008397
Førland E.J., Hansen-Bauer I., 2003. Climate variations and implications for precipitation types in the Norwegian Arctic. met. no REPORT 24/02 KLIMA, 21.
Førland E.J., Isaksen K., Lutz J., Hanssen-Bauer I., 2020. Measured and Modeled Historical Precipitation Trends for Svalbard. Journal of Hydrometeorology 21: 1-15. DOI: https://doi.org/10.1175/JHM-D-19-0252.1
Garcia S.C., Salvador F.F., 1994. Snowfall analysis in the Eastern Pyrenees. Offenbach am Main: Proceedings 23rd International Conference on Alpine Meteorology, Selbstverlag Deutscher Wetterdienst, Offenbach, Germany: 303-307.
Gong G., Entekhabi D., Cohen J., 2002. A large-ensemble model study of the wintertime AO/NAO and the role of interannual snow perturbations. Journal of Climate 15: 3488-3499. DOI: https://doi.org/10.1175/1520-0442(2002)015<3488:ALEMSO>2.0.CO;2
Gong G., Entekhabi D., Cohen J., 2003a. Relative impacts of Siberian and North American snow anomalies on the Northern Hemisphere mode. Geophysical Research Letters 30: 16. DOI: https://doi.org/10.1029/2003GL017749
Gong G., Entekhabi D., Cohen J., 2003b. Modelled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. Journal of Climate 16: 3917-3931. DOI: https://doi.org/10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2
Gong G., Entekhabi D., Cohen J., Robinson D.A., 2004. Sensitivity of atmospheric response to modelled snow anomaly characteristics. Journal of Geophysical Research Atmospheres 109: D06107. DOI: https://doi.org/10.1029/2003JD004160
Grab S., 2005. Aspects of the geomorphology, genesis and environmental significance of earth hummocks (thúfur, pounus): Miniature cryogenic mounds. Progress in Physical Geography 29: 139-155. DOI: https://doi.org/10.1191/0309133305pp440ra
Grundstein A., 2003. A synoptic scale climate analysis of anomalous snow water equivalent over the northern Great Plains of the USA. International Journal of Climatology 23: 871-886. DOI: https://doi.org/10.1002/joc.908
Hamed K.H., Rao A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204: 182-196. DOI: https://doi.org/10.1016/S0022-1694(97)00125-X
Holton J.R., Hakim G.J., 2012. An introduction to dynamic meteorology. Elsevier: 524. DOI: https://doi.org/10.1016/B978-0-12-384866-6.00001-5
Huntington T.G., Hodgkins G.A., Keim B.D., Dudley R.W., 2004. Changes in the proportion of precipitation occurring as snow in New England (1949-2000). Journal of Climate 17: 2626-2636. DOI: https://doi.org/10.1175/1520-0442(2004)017<2626:CITPOP>2.0.CO;2
Hynčica M., Huth R., 2019a. Long-term changes in precipitation phase in Europe in cold half year. Atmospheric Research 227: 79-88. DOI: https://doi.org/10.1016/j.atmosres.2019.04.032
Hynčica M., Huth R., 2019b. Long-term changes in precipitation phase in Czechia. Geografie 124: 41-55. DOI: https://doi.org/10.37040/geografie2019124010041
IPCC [Intergovernmental Panel of Climate Change], 2021. Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. In: Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., Zhou B. (eds), Cambridge University Press, Cambridge, UK and New York, NY, USA.
Irannezhad M., Ronkanena A.-K., Kiania S., Chenb D., Kløvea B., 2017. Long-term variability and trends in annual snowfall/total precipitation ratio in Finland and the role of atmospheric circulation patterns. Cold Regions Science and Technology 143: 23-31. DOI: https://doi.org/10.1016/j.coldregions.2017.08.008
Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Roy J., Dennis J., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society 77: 437-470. DOI: https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Kapnick S.B., Delworth T.L., 2013. Controls of global snow under a changed climate. Journal of Climate 26: 5537-5562. DOI: https://doi.org/10.1175/JCLI-D-12-00528.1
Kendall M., 1975. Multivariate analysis. Charles Griffin & Company, London.
Knowles N., Dettinger M.D., Cayan D.R., 2006. Trends in snowfall versus rainfall in the western United States. Journal of Climate 19: 4545-4559. DOI: https://doi.org/10.1175/JCLI3850.1
Krasting J.P., Broccoli A.J., Dixon K.W., Lanzante J.R., 2013. Future changes in Northern Hemisphere snowfall. Journal of Climate 26: 7813-7828. DOI: https://doi.org/10.1175/JCLI-D-12-00832.1
Lehmann J., Coumou D., 2015. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Scientific Reports 5: 17491. DOI: https://doi.org/10.1038/srep17491
Loth B., Graf H.F., Oberhuber J.M., 1993. Snow cover model for global climate simulations. Journal of Geophysical Research Atmospheres 98: 10451-10464. DOI: https://doi.org/10.1029/93JD00324
Łupikasza E., 2008. Zależność występowania rodzajów opadów od temperatury powietrza w Hornsundzie (Spitsbergen) w okresie 1978-2007. Problemy Klimatologii Polarnej 17: 87-103.
Łupikasza E.B., Ignatiuk D., Grabiec M., Cielecka-Nowak K., Laska M., Jania J., Luks B., Uszczyk A., Budzik T., 2019. The Role of Winter Rain in the Glacial System on Svalbard. Water 11: 334. DOI: https://doi.org/10.3390/w11020334
Łupikasza E., 2016. The climatology of air-mass and frontal extreme precipitation. Springer Atmospheric Sciences, Springer Cham. DOI: https://doi.org/10.1007/978-3-319-31478-5
Łupikasza E., Cielecka-Nowak K., 2020. Changing probabilities of days with snow and rain in the Atlantic sector of the arctic under the current warming trend. Journal of Climate 33: 2509-2532. DOI: https://doi.org/10.1175/JCLI-D-19-0384.1
Lüthi S., Ban N., Kotlarski S., Steger C.R., Jonas T., Schär C., 2019. Projections of alpine snow-cover in a high-resolution climate simulation. Atmosphere 10: 463. DOI: https://doi.org/10.3390/atmos10080463
Mackay J.R., 1987. Some mechanical aspects of pingo growth and failure, Western Arctic Coast, Canada. Canadian Journal of Earth Science 24: 1108-1119. DOI: https://doi.org/10.1139/e87-108
Mann H.B., 1945. Nonparametric tests against trend. Econometrica 13: 245-259. DOI: https://doi.org/10.2307/1907187
Marty C., Blanchet J., 2012. Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics. Climatic Change 111: 705-721. DOI: https://doi.org/10.1007/s10584-011-0159-9
Merino A., Fernández S., Hermida L., López L., Sánchez J.L., García-Ortega E., Gascón E., 2014. Snowfall in the Northwest Iberian Peninsula: Synoptic circulation patterns and their influence on snow day trends. The Scientific World Journal 48: 480275. DOI: https://doi.org/10.1155/2014/480275
Mora J.A.N., Martín J.R., García M.M., Pablo Davilad F., Sorianod L.R., 2016. Climatological characteristics and synoptic patterns of snowfall episodes in the central Spanish Mediterranean area. International Journal of Climatology 36: 4488-4496. DOI: https://doi.org/10.1002/joc.4645
Mote T.L., Gamble D.W., Underwood S.J., Bentley M.L., 1997. Synoptic-scale features common to heavy snowstorms in the Southeast United States. Weather and Forecasting 12: 5-23. DOI: https://doi.org/10.1175/1520-0434(1997)012<0005:SSFCTH>2.0.CO;2
Nikolova N., Fasko P., Lapin M., Svec M., 2013. Changes in snowfall/precipitation-day ratio in Slovakia and their linkages with air temperature and precipitation. Contributions to Geophysics and Geodesy 43: 141-155. DOI: https://doi.org/10.2478/congeo-2013-0009
Ohba M., Suimoto S., 2020. Impacts of climate change on heavy wet snowfall in Japan. Climate Dynamics 54: 3151-3164. DOI: https://doi.org/10.1007/s00382-020-05163-z
Pedersen S.H., Liston G.E., Tamstorf M.P., Westergaard-Nielsen A., Schmidt N.M., 2015. Quantifying episodic snowmelt events in Arctic ecosystems. Ecosystems 18: 839-856. DOI: https://doi.org/10.1007/s10021-015-9867-8
Perevedentsev Y.P., Vasilev A.A., Sherstyukov B.G., Shantalinskii K.M., 2021. Climate change on the territory of Russia in the late 20th-early 21st centuries. Russian Meteorology and Hydrology 46: 658-666. DOI: https://doi.org/10.3103/S1068373921100022
Popova V., 2007. Winter snow depth variability over northern Eurasia in relation to recent atmospheric circulation changes. International Journal of Climatology 27: 1721-1733. DOI: https://doi.org/10.1002/joc.1489
Scott D., Dawson J., Jones B., 2008. Climate change vulnerability of the US Northeast winter recreation-tourism sector. Mitigation and Adaptation Strategies for Global Change 13: 577-596. DOI: https://doi.org/10.1007/s11027-007-9136-z
Screen J.A., Simmonds I., 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464: 1334-1337. DOI: https://doi.org/10.1038/nature09051
Sen P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statistical Association 63: 1379-1389. DOI: https://doi.org/10.1080/01621459.1968.10480934
Serquet G., Marty C., Dulex J.P., Rebetez M., 2011. Seasonal trends and temperature dependence of the snowfall/precipitation day ratio in Switzerland. Geophysical Research Letters 38: L07703. DOI: https://doi.org/10.1029/2011GL046976
Serreze M.C., Barrett A.P., Stroeve J.C., Kindig D.N., Holland M.M., 2009. The emergence of surface-based Arctic amplification. The Cryosphere 3: 11-19. DOI: https://doi.org/10.5194/tc-3-11-2009
Serreze M.C., Barry R., 2011. Processes and impacts of Arctic amplification: A research synthesis. Global Planet Change 77: 85-96. DOI: https://doi.org/10.1016/j.gloplacha.2011.03.004
Sims E., Liu G., 2017. A parameterisation of the probability of snow-rain transition. Journal of Hydrometeorology 16: 1466-1477. DOI: https://doi.org/10.1175/JHM-D-14-0211.1
Spreitzhofer G., 1999. Spatial, temporal and intensity characteristics of heavy snowfall events over Austria. Theoretical and Applied Climatology 62: 209-219. DOI: https://doi.org/10.1007/s007040050085
Stieglitz M., Déry S.J., Romanovsky V.E., Osterkamp T.E., 2003. The role of snow cover in the warming of Arctic permafrost. Geophysical Research Letters 30: 1721. DOI: https://doi.org/10.1029/2003GL017337
Strasser U., 2008. Snow loads in a changing climate: New risks? Natural Hazards and Earth System Sciences 8: 1-8. Online: www.nat-hazards-earth-syst-sci.net/8/1/2008/ (accessed 3 June 2024). DOI: https://doi.org/10.5194/nhess-8-1-2008
Suriano Z.J., Leathers D.J., 2017. Synoptically classified lake effect snowfall trends to the lee of Lakes Erie and Ontario. Climate Research 74: 1-13. DOI: https://doi.org/10.3354/cr01480
Tamang S.K., Ebtehaj A.M., Prein A.F., Heymsfield A.J., 2020. Linking global changes of snowfall and wet-bulb temperature. Journal of Climate 33: 39-59.
Tamang S.K., Ebtehaj A.M., 2020. Linking Global Changes of Snowfall and Wet-Bulb Temperature. Journal of Climate 33: 39-59. DOI: https://doi.org/10.1175/JCLI-D-19-0254.1
Tibaldi S., Buzzi A., 1983. Effects of orography on Mediterranean lee cyclogenesis and its relationship to European blocking. Tellus A 35: 269-286. DOI: https://doi.org/10.1111/j.1600-0870.1983.tb00203.x
Twardosz R., Łupikasza E., Niedźwiedź T., Walanus A., 2012. Long-term variability of occurrence of precipitation forms in winter in Kraków, Poland. Climatic Change 113: 623-638. DOI: https://doi.org/10.1007/s10584-011-0352-x
Vikhamar-Schuler D., Isaksen K., Haugenn J.E., Tømmervik H., Luks B., Schuler T.V., Bjerke J.W., 2016. Changes in winter warming events in the Nordic arctic region. Journal of Climate 29: 6223-6244. DOI: https://doi.org/10.1175/JCLI-D-15-0763.1
Viste E., Sorteberg A., 2015. Snowfall in the Himalayas: An uncertain future from a little-known past. The Cryosphere 9: 1147-1167. DOI: https://doi.org/10.5194/tc-9-1147-2015
Wild R., O’Hare G., Wilby R., 1996. A historical record of blizzards/major snow events in the British Isles, 1880-1989. Weather 51: 81-90. DOI: https://doi.org/10.1002/j.1477-8696.1996.tb03952.x
WMO, 2019: Manual on Codes. International Codes, Volume I.1, Annex II to the WMO Technical Regulations. Part A – Alphanumeric Codes. WMO-No. 306, Geneva, Switzerland.
Wu R., Kirtman B.P., 2007. Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. Journal of Climate 20: 1285-1304. DOI: https://doi.org/10.1175/JCLI4068.1
Yang Z., Huang W., He X., Wang Y., Qiu T., Wright J.S., Wang B., 2019. Synoptic conditions and moisture sources for extreme snowfall events over East China. Journal of Geophysical Research Atmosphere 124: 601-623. DOI: https://doi.org/10.1029/2018JD029280
Ye H., 2008. Changes in frequency of precipitation types associated with surface air temperature over northern Eurasia during 1936-90. Journal of Climate 21: 5807-5819. DOI: https://doi.org/10.1175/2008JCLI2181.1
Ye K.H., Wu R.G., 2017. Autumn snow cover variability over northern Eurasia and roles of atmospheric circulation. Advances in Atmospheric Sciences 34: 847-858. DOI: https://doi.org/10.1007/s00376-017-6287-z
Zhong K., Zheng F., Xua X., Qina Ch., 2018. Discriminating the precipitation phase based on different temperature thresholds in the Songhua River Basin, China. Atmospheric Research 205: 48-59. DOI: https://doi.org/10.1016/j.atmosres.2018.02.002
License
Copyright (c) 2024 Ewa B. Łupikasza, Łukasz Małarzewski, Quoc B. Pham
This work is licensed under a Creative Commons Attribution 4.0 International License.