User preferences of perspective and dimensionality of tourism space geovisualisation supporting orientation in a non-immersive virtual reality
PDF

Keywords

user preferences
PC monitor
cartographic perspective
two-dimensional vs. three-dimensional
building plan

How to Cite

Zajadacz, A., & Halik, Łukasz. (2024). User preferences of perspective and dimensionality of tourism space geovisualisation supporting orientation in a non-immersive virtual reality. Quaestiones Geographicae, 43(3), 77–86. https://doi.org/10.14746/quageo-2024-0027

Abstract

The research problem was related to the search for appropriate parameters relevant to the tools that support spatial orientation in large-scale building plans. This problem was addressed by selecting the optimal (1) observation perspective (passerby perspective, bird-eye view perspective, top–down view perspective) in a non-immersive virtual reality (VR) and (2) the presentation dimensionality (2D/3D). The perception of the plans was analysed taking into account such independent variables as gender and the individual level of spatial orientation of the study participants, determined based on the Santa Barbara Sense of Direction (SBSOD) and the Mental Rotation tests (MRT). In the research conducted in 2021 on a sample of 103 people, the experimental methodology involved the comparison of preferences of the study participants in terms of geovisualisation before and after getting to know the real tourism space. The results showed the compliance of preferences, i.e. recognition as the optimal plan in 2D dimensionality and the top–down view perspective. No statistically significant differences in spatial orientation due to gender or individual predispositions measured by the SBSOD and the MRT tests were confirmed.

https://doi.org/10.14746/quageo-2024-0027
PDF

Funding

The research was carried out as part of the grant endowed to the Faculty of Geographical and Geological Sciences, Adam Mickiewicz University in Poznań: Supporting spatial orien- tation in large-scale facilities by optimising the perspective of 2D/3D geovision observation in a virtual reality system. Project manager – Prof. Alina Zajadacz; contractor Dr Łukasz Halik.

References

Act on ensuring accessibility, 2019. Ustawa z dnia 19 lipca 2019 r. o zapewnianiu dostępności osobom ze szczególnymi potrzebami. Dz. U. 2019 poz. 1696.

Bailenson J., 2019. Wirtualna rzeczywistość. Doznanie na żądanie. Helion, Gliwice.

Biljecki F., Ledoux H., Stoter J., 2016. An improved LOD specification for 3D building models, computers. Environment and Urban Systems 59: 25-37. DOI: https://doi.org/10.1016/j.compenvurbsys.2016.04.005

Bodner G., Guay R., 1997. The Purdue visualization of rotations test. The Chemical Educator 2(4): 1-17. DOI: https://doi.org/10.1007/s00897970138a

Bruder G., Interrante V., Phillips L., Steinicke F., 2012. Redirecting walking and driving for natural navigation in immersive virtual environments. IEEE Transaction on Visualization and Computer Graphics 18(4): 538-545. DOI: https://doi.org/10.1109/TVCG.2012.55

Carbonell-Carrera C., Saorin J.L., Hess-Medler S., 2020. spatial orientation skill for landscape architecture education and professional practice. Land 9: 1-16. DOI: https://doi.org/10.3390/land9050161

Carbonell-Carrera C., Saorin J.L., 2018. Virtual learning environments to enhance spatial orientation. EURASIA Journal of Mathematics Science Technology Education 14: 709-719. DOI: https://doi.org/10.12973/ejmste/79171

Chamizo V.D., Rodrigo T., 2019. Spatial orientation. In: Vonk J., Shackelford T. (eds), Encyclopedia of animal cognition and behavior. Springer, Cham, pp. 1-11. DOI: https://doi.org/10.1007/978-3-319-47829-6_1416-1

Cirio G., Olivier A.-H., Marchal M., Pettré J., 2013. Kinematic evaluation of virtual walking trajectories. IEEE Transaction on Visualization and Computer Graphics 19(4): 671-680. DOI: https://doi.org/10.1109/TVCG.2013.34

Çöltekin A., Lochhead I., Madden M., Christophe S., Devaux A., Pettit Ch., Lock O., Shukla S., Herman L., Stachon Z., Kubícek P., Snopková D., Bernardes S., Hedley N., 2020. Extended reality in spatial sciences: A review of research challenges and future directions. International Journal of Geo-Information 9(7): 439. DOI: https://doi.org/10.3390/ijgi9070439

Diersch N., Wolbers T., 2019. The potential of virtual reality for spatial navigation research across the adult lifespan. Journal of Experimental Biology 222: 1-9. DOI: https://doi.org/10.1242/jeb.187252

Gehl J., 2017. Miasta dla Ludzi, Tłum. Szymon Nogalski. Wydawnictwo RAM Sp. z o. o, Kraków.

Halik Ł, Kent A.J., 2021. Measuring user preferences and behaviour in a topographic immersive virtual environment (TopoIVE) of 2D and 3D urban topographic data, International Journal of Digital Earth 14(12): 1835-1867. DOI: https://doi.org/10.1080/17538947.2021.1984595

Halik Ł., 2018. Challenges in converting Polish topographic database of built-up areas into 3D virtual reality geovisualization. The Cartographic Journal 55(4): 391-399. DOI: https://doi.org/10.1080/00087041.2018.1541204

Halik Ł., Smaczyński M., 2018. Geovisualization of relief in a virtual reality system on the basis of low aerial images. Pure and Applied Geophysics 175(9): 3209-3221. DOI: https://doi.org/10.1007/s00024-017-1755-z

Hegarty M., Richardson A., Montello D., Lovelace K., Subbiah, I., 2002. Development of a self-report measure of environmental spatial ability. Intelligence 30(5): 425-447. DOI: https://doi.org/10.1016/S0160-2896(02)00116-2

Herman L., Juřík V., Stachoň Z., Vrbík D., Russnák J., Řezník T., 2018. Evaluation of user performance in interactive and static 3D maps. ISPRS International Journal of Geo-Information 7(11): 415. DOI: https://doi.org/10.3390/ijgi7110415

Jones C.M., Braithwaite V.A., Healy S.D., 2003. The evolution of sex differences in spatial ability. Behavioral Neuroscience 117: 403-411. DOI: https://doi.org/10.1037/0735-7044.117.3.403

Lidwell W., 2010. Universal principles of design. Rockport Publishers Inc., Gloucester.

Linn, M.C., Petersen A.C., 1985. Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development 56(6): 1479-1498. DOI: https://doi.org/10.1111/j.1467-8624.1985.tb00213.x

Lokka I.E., Çöltekin A., 2019. Toward optimizing the design of virtual environments for route learning: Empirically assessing the effects of changing levels of realism on memory. International Journal of Digital Earth 12: 137-155. DOI: https://doi.org/10.1080/17538947.2017.1349842

Maier P., 1996. Spatial geometry and spatial ability: How to make solid geometry solid. In: Proceedings of the Annual Conference of Didactics of Mathematics (GDM), Regensburg, Germany, 4-8 March 1996: 69-68.

Marunic G., Glažar V., 2014. Improvement and assessment of spatial ability in engineering education. Engineering Review 34(2): 139-150.

Medyńska-Gulij B., 2021. Kartografia i geomedia. Wydawnictwo Naukowe PWN, Warszawa.

Nguyen-Vo T., Riecke E.B., Stuerzlinger W., 2017. Moving in a box: Improving spatial orientation in virtual reality using simulated reference frames. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), Los Angeles, CA, USA, 2017: 207-208. DOI: https://doi.org/10.1109/3DUI.2017.7893344

Nielsen C.P., Oberle A., Sugumaran R., 2011. Implementing a high school level geospatial technologies and spatial thinking course. Journal of Geography 110(2): 60-69. DOI: https://doi.org/10.1080/00221341.2011.534171

Pacheco-Cobos L., Rosetti M., Cuatianquiz C., Hudson R., 2010. Sex differences in mushroom gathering: Men expend more energy to obtain equivalent benefits. Evolution and Human Behavior 31: 289-297. DOI: https://doi.org/10.1016/j.evolhumbehav.2009.12.008

Park D.C., Lautenschlager G., Hedden T., Davidson N.S., Smith A.D., Smith P.K., 2002. Models of visuospatial and verbal memory across the adult life span. Psychology and Aging 17(2): 299-320. DOI: https://doi.org/10.1037//0882-7974.17.2.299

Pastel D., Bürger D., Chen C.H., Petri K., Witte K., 2021, Comparison of spatial orientation skill between real and virtual environment. Virtual Reality 26: 91-104. DOI: https://doi.org/10.1007/s10055-021-00539-w

Rodríguez C.A., Chamizo V.D., Mackintosh N.J. 2013. Do hormonal changes that appear at the onset of puberty determine the strategies used by female rats when solving a navigation task? Hormones and Behavior 64: 122-135. DOI: https://doi.org/10.1016/j.yhbeh.2013.05.007

Roth R.E., Çöltekin A., Delazari L., Filho H.F., Griffin A., Hall A., Korpi J., Lokka I., Mendonça A., Ooms K., van Elzakker C., 2017. User studies in cartography: opportunities for empirical research on interactive maps and visualizations. International Journal of Cartography 3: 61-89, DOI: https://doi.org/10.1080/23729333.2017.1288534

Sandstrom N.J., Kaufman J., Huettel, S.A., 1998. Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research 6: 351-360. DOI: https://doi.org/10.1016/S0926-6410(98)00002-0

Silverman I., Eals M., 1992. Sex differences in spatial abilities: Evolutionary theory and data. In Barkow J.H., Cosmides L., Tooby J. (eds), The adapted mind: Evolutionary psychology and the generation of culture. Oxford Press, New York: 531-549. DOI: https://doi.org/10.1093/oso/9780195060232.003.0015

Silwerman D., 2008. Interpretacja danych jakościowych. PWN, Warszawa.

Slocum T.A., Blok C., Jiang B., Koussoulakou A., Montello D.R., Fuhrmann S., Hedley N.R., 2001. Cognitive and usability issues in geovisualization. Cartography and Geographic Information Science 28(1): 61-75. DOI: https://doi.org/10.1559/152304001782173998

Słownik PWN, 2023. Online: https://sjp.pwn.pl/slowniki/optymalny.html (accessed 28 December 2023).

Smith I.M., 1964. Spatial ability: Its educational and social significance. University of London Press, London, UK: 1964.

Sorby S.A., 1999. Developing 3-D spatial visualization skills. Engineering Design Graphics Journal 1999(63): 21-32.

Tartre L.A., 1990. Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education 21(3): 216-229. DOI: https://doi.org/10.5951/jresematheduc.21.3.0216

Vandenbert S.G., Kuse A.R., 1978. Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills 47: 599-604. DOI: https://doi.org/10.2466/pms.1978.47.2.599

Vashro L., Cashdan E., 2015. Spatial cognition, mobility, and reproductive success in northwestern Namibia. Evolution and Human Behavior 36: 123-129. DOI: https://doi.org/10.1016/j.evolhumbehav.2014.09.009

Ward S.L., Newcombe N., Overton W.F., 1986. Turn left at the church, or three miles north: A study of direction giving and sex differences. Environment and Behavior 18: 192-213. DOI: https://doi.org/10.1177/0013916586182003

Weckbacher L.M., Okamoto Y., 2014. Mental rotation ability in relation to self-perceptions of high school geometry. Learning and Individual Differences 30: 58-63. DOI: https://doi.org/10.1016/j.lindif.2013.10.007

Williams C.L., Barnett A.M., Meck W.H., 1990. Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behavioral Neuroscience 104: 84-97. DOI: https://doi.org/10.1037//0735-7044.104.1.84

Zagata K., Gulij J., Halik Ł., Medyńska-Gulij B., 2021. Mini-map for gamers who walk and teleport in a virtual stronghold. International Journal of Geo-Information 96: 1-17. DOI: https://doi.org/10.3390/ijgi10020096

Zajadacz A., 2014. Sources of tourist information used by deaf people. Case study: The Polish deaf community. Current Issues in Tourism 17(5): 434-454. DOI: https://doi.org/10.1080/13683500.2012.725713

Zajadacz A., 2015. Evolution of models of disability as a basis for further policy changes in accessible tourism. Journal of Tourism Futures 1(3): 189-202. DOI: https://doi.org/10.1108/JTF-04-2015-0015