Abstract
Natural springs are one of the potential sources of water supply, but due to negative anthropogenic impacts, the water quality can deteriorate. The Zygmunt Spring in Złoty Potok does not form the basis of the population’s water supply, but it is constantly being exploited by residents and tourists. This study was carried out at Zygmunt Spring in two measurement series for 34 physicochemical and bacteriological parameters. The average electrolytic conductivity (EC) of the water in this spring is about 0.039 S ∙ m−1, the pH is about 7.04 and the discharge is equal to 15 dm3 ∙ s−1. The test results were compared with the permissible limits for national drinking water, groundwater quality and WHO standards. The value of the Backman pollution index was calculated for these parameters. This index takes into account parameters that exceed the upper permissible concentrations of contaminants. The Backman Contamination Index value was about −13, but the results of bacteriological analyses indicate a very high number of microorganisms in the water (>300 cfu ∙ mL−1), indicating a high health risk.
References
Ansari M.A., Deodhar A., Kumar U.S., Khatti V.S., 2015. Water quality of few springs in outer Himalayas – A study on the groundwater-bedrock interactions and hydrochemical evolution. Groundwater for Sustainable Development 1(1-2): 59-67. DOI: https://doi.org/10.1016/j.gsd.2016.01.002
Arvizu I.S., Murray S.R., 2021. A simple, quantitative assay for the detection of viable but non-culturable (VBNC) bacteria. STAR Protocols 2(3): 100738. DOI: https://doi.org/10.1016/j.xpro.2021.100738
Backman B., Bodiš D., Lahermo P., Rapant S., Tarvainen T., 1998. Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology 36(1-2): 55-64. DOI: https://doi.org/10.1007/s002540050320
Benson C.H., Ören A.H., Gates W.P., 2010. Hydraulic conductivity of two geosynthetic clay liners permeated with a hyperalkaline solution. Geotextiles and Geomembranes 28(2): 206-218. DOI: https://doi.org/10.1016/j.geotexmem.2009.10.002
Biran D., Ron EZ., 2018. Extraintestinal pathogenic Escherichia coli. Current Topics in Microbiology and Immunology 416: 149-161. DOI: https://doi.org/10.1007/82_2018_108
Darvishmotevalli M., Moradnia M., Noorisepehr M., Fatehizadeh A., Fadaei S., Mohammadi H., Salari M., Jamali H.A., Daniali S.S., 2019. Evaluation of carcinogenic risks related to nitrate exposure in drinking water in Iran. MethodsX 6: 1716-1727. DOI: https://doi.org/10.1016/j.mex.2019.07.008
Gascoyne M., 2004. Hydrogeochemistry, groundwater ages and sources of salts in a granitic batholith on the Canadian Shield, southeastern Manitoba. Applied Geochemistry 19(4): 519-560. DOI: https://doi.org/10.1016/S0883-2927(03)00155-0
Gogu R.C., Dassargues A., 2000. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology 39(6): 549-559. DOI: https://doi.org/10.1007/s002540050466
Gothwal R., Shashidhar T., 2014. Antibiotic pollution in the environment: a review. Clean 43(4): 479-489. DOI: https://doi.org/10.1002/clen.201300989
Guo Y., Li P., He X., Wang L., 2022. Groundwater quality in and around a landfill in northwest China: characteristic pollutant identification, health risk assessment, and controlling factor analysis. Exposure and Health 14(4): 885-901. DOI: https://doi.org/10.1007/s12403-022-00464-6
Hamed Y., Hadji R., Ahmadi R., Ayadi Y., Shuhab K., Pulido-Bosch A., 2023. Hydrogeological investigation of karst aquifers using an integrated geomorphological, geochemical, GIS, and remote sensing techniques (Southern Mediterranean Basin—Tunisia). Environment, Development and Sustainability 26: 6943-6975. DOI: https://doi.org/10.1007/s10668-023-02994-8
Harichandan A., Sekhar Patra H., Mohan Sethy K., 2017. Evaluation of water quality of local streams at Gandhamardan iron mines, Suakati, Keonjhar District of Odisha, India. Journal of Pollution Effects and Control 05(03). DOI: https://doi.org/10.4172/2375-4397.1000199
Heliasz Z., Ptak B., Więckowski R., Zieliński T., 1987. Explanation to detailed geological map of Poland, sheet Janów (846) 1:50000. Wydawnictwa Geologiczne, Warszawa.
Hernandez-Pastor L., Geurtsen J., Baugh B., Khoury A.C.E., Kalu N., Gauthier-Loiselle M., Bungay R., Cloutier M., Sarnecki M., Saade E., 2023. Clinical burden of invasive Escherichia coli disease among older adult patients treated in hospitals in the United States. BMC Infectious Diseases 23(1): 550. DOI: https://doi.org/10.1186/s12879-023-08479-3
Humphrey C.P., Sanderford C., Iverson G., 2018. Concentrations and exports of fecal indicator bacteria in watersheds with varying densities of onsite wastewater systems. Water, Air and Soil Pollution/Water, Air & Soil Pollution 229(8): 277. DOI: https://doi.org/10.1007/s11270-018-3929-4
Iverson G., Sanderford C., Humphrey C.P., Etheridge J.R., Kelley T., 2020. Fecal indicator bacteria transport from watersheds with differing wastewater technologies and septic system densities. Applied Sciences 10(18): 6525. DOI: https://doi.org/10.3390/app10186525
Kadhem A.J., 2013. Assessment of water quality in Tigris River-Iraq by using GIS mapping. Natural Resources 04(06): 441-448. DOI: https://doi.org/10.4236/nr.2013.46054
Karkocha R., 2021. Assessment of changes in the quality of groundwater in the region of the municipal landfill in Wojkowice. Acta Scientiarum Polonorum. Formatio Circumiectus 20(1): 43-54. DOI: https://doi.org/10.15576/ASP.FC/2021.20.1.43
Kayastha S.P., 2015. Geochemical parameters of water quality of Karra River, Hetauda Industrial Area, Central Nepal. Journal of Institute of Science and Technology 20(2): 31-36. DOI: https://doi.org/10.3126/jist.v20i2.13945
Knopek T., Dąbrowska D., 2021. The use of the contamination index and the LWPI index to assess the quality of groundwater in the area of a municipal waste landfill. Toxics 9(3): 66. DOI: https://doi.org/10.3390/toxics9030066
Kondracki J., 2000. Geografia regionalna Polski. PWN, Warszawa.
Kumar M., Ramanathan A., Tripathi R., Farswan S., Kumar D., Bhattacharya P., 2017. A study of trace element contamination using multivariate statistical techniques and health risk assessment in groundwater of Chhaprola Industrial Area, Gautam Buddha Nagar, Uttar Pradesh, India. Chemosphere 166: 135-145. DOI: https://doi.org/10.1016/j.chemosphere.2016.09.086
Macioszczyk A., 1987. Hydrogeochemia. Wydawnictwa Geologiczne, Warsaw: 475.
Meng Q., Zhang J., Zhang Z., Wu T., 2016. Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): distribution, sources, and water quality assessment. Environmental Science and Pollution Research International 23(8): 8091-8103. DOI: https://doi.org/10.1007/s11356-016-6074-x
MIiR [Ministerstwo Inwestycji i Rozwoju], 2019. Dane do obliczeń energetycznych budynków. Online: www.gov.pl/web/archiwum-inwestycje-rozwoj/dane-do-obliczen-energetycznych-budynkow (accessed 6 August 2024).
Muhammad S., Shah M.T., Khan S., 2011. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal 98(2): 334-343. DOI: https://doi.org/10.1016/j.microc.2011.03.003
Online: https://www.gov.pl/web/archiwum-inwestycje-rozwoj/dane-do-obliczen-energetycznych-budynkow (accessed 16 June 2024).
Owamah I., Asiagwu A., Egboh S., Phil-Usiayo S., 2013. Drinking water quality at Isoko North communities of the Niger Delta Region, Nigeria. Toxicology and Environmental Chemistry/Toxicological and Environmental Chemistry Reviews/Toxicological and Environmental Chemistry 95(7): 1116-1128. DOI: https://doi.org/10.1080/02772248.2013.847939
Pacholewski A., Guzik M., 1997a. Explanations to the hydrogeological map of Poland on a scale of 1:50,000, Janów sheet (846). Polish Geological Institute, Warsaw.
Pacholewski A., Guzik M., 1997b. Hydrogeological map of Poland on a scale of 1:50,000, Janów sheet (846). Polish Geological Institute, Warsaw.
Pazdro Z., Kozerski B., 1990. Hydrogeologia ogólna. Wydawnictwa Geologiczne, Warsaw: 624.
Petty N.K., Zakour N.L.B., Stanton-Cook M., Skippington E., Totsika M., Forde B.M., Phan M., Moriel D.G., Peters K.M., Davies M., Rogers B.A., Dougan G., Rodriguez-Baño J., Pascual A., Pitout J.D.D., Upton M., Paterson D.L., Walsh T.R., Schembri M.A., Beatson S.A., 2014. Global dissemination of a multidrug resistant Escherichia coli clone. Proceedings of the National Academy of Sciences of the United States of America 111(15): 5694-5699. DOI: https://doi.org/10.1073/pnas.1322678111
Pinter I.F., Salomon M.V., Gil R., Mastrantonio L., Bottini R., Piccoli P., 2018. Arsenic and trace elements in soil, water, grapevine and onion in Jáchal, Argentina. Science of the Total Environment 615: 1485-1498. DOI: https://doi.org/10.1016/j.scitotenv.2017.09.114
Pokładek R., Kowalczyk T., Orzepowski W., Pulikowski K., 2011. Na, K, Ca and Mg concentrations in effluent water drained from agricultural catchment basins in Lower Silesia. Journal of Elementology 16(3): 467-479. DOI: https://doi.org/10.5601/jelem.2011.16.3.11
Regulation of the Minister of Health of 07 December 2017 on the quality of water intended for human consumption (Journal of Laws of 2017, item 2294).
Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the criteria and method of assessing the status of groundwater bodies (Journal of Laws of 2019, item 2148).
Sari M.M., Andarani P., Notodarmojo S., Harryes R.K., Nguyen M.N., Yokota K., Inoue T., 2022. Plastic pollution in the surface water in Jakarta, Indonesia. Marine Pollution Bulletin 182: 114023. DOI: https://doi.org/10.1016/j.marpolbul.2022.114023
Stevanović Z., 2010. Utilization and regulation of springs. In: Groundwater hydrology of springs: 339-388, Elsevier. DOI: https://doi.org/10.1016/B978-1-85617-502-9.00009-8
Stevens L., Schenk E., Springer A., 2021. Springs ecosystem classification. Ecological Application 31(1): 2218. DOI: https://doi.org/10.1002/eap.2218
Tałałaj I.A., 2014. Assessment of groundwater quality near the landfill site using the modified water quality index. Environmental Monitoring and Assessment 186(6): 3673-3683. DOI: https://doi.org/10.1007/s10661-014-3649-1
Todd D., 2009. Groundwater hydrology. John Wiley & Sons, New Delhi, India.
Willscher S., Mirgorodsky D., Jablonski L., Ollivier D., Merten D., Büchel G., Wittig J., Werner P., 2013. Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy 131-132: 46-53. DOI: https://doi.org/10.1016/j.hydromet.2012.08.012
Wojtal A.Z., Okon D., Rózkowski J., 2017. Różnorodność okrzemek (Bacillariophyta) w źródłach okolic Zawiercia. In: post-conference materials of XXVII Sympozjum Jurajskie. Człowiek i Przyroda Wyżyny Krakowsko-Wieluńskiej. ZPKWS, Będzin: 67-73.
WHO [World Health Organization], 2022. Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva.
Zembal M., Szulik J., Cudak J., 2013. GIS database of the hydrogeological map of Poland at a scale of 1:50,000. First aquifer, sensitivity to pollution. Janów sheet. Polish Geological Institute, Warsaw.
Zhang Q., Feng M., Hao X., 2018. Application of Nemerow index method and integrated water quality index method in water quality assessment of Zhangze Reservoir, IOP Conference Series. Earth and Environmental Science 128: 012160. DOI: https://doi.org/10.1088/1755-1315/128/1/012160
License
Copyright (c) 2024 Dominika Dąbrowska , Marek Ruman, Jacek Wróbel
This work is licensed under a Creative Commons Attribution 4.0 International License.