Abstract
The study investigates glacial lakes in Svalbard, examining examples from the forelands of Gåsbreen, Crammerbreen, Knivseggbreen, Neppebreen and Ragnarbreen, each representing different classifications of glacial lakes, including ice-dammed, frontal moraine-dammed and medial moraine-dammed. These lakes serve as key indicators of ongoing climate change and the effects of deglaciation processes in polar landscapes. Quantitative analyses reveal notable differences among the selected glacial lakes. For instance, Goësvatnet experienced cyclical glacial lake outburst floods (GLOFs), with a recorded volume of 666,389 m3 during one event. Conversely, the lake on the Ragnarbreen foreland, while stable, has not encountered any GLOFs, indicating a distinct response to deglaciation compared with other examples. Hydrographic and surface analyses, conducted using digital elevation models (DEMs) and remote sensing data, provide insights into the morphological characteristics and dynamics of the glacial lakes and surrounding landscapes. Longitudinal profiles of glaciers show varied terrains, with Ragnarbreen exhibiting the least variability due to its source zone on the ice cap, while Crammerbreen presents diverse features, including tectonic faults resulting in icefalls with slopes >35°. By including multiple glacial lakes across different locations and classifications, this study offers a comprehensive understanding of the diverse responses of glacial lakes to deglaciation processes in Svalbard, shedding light on the complex interactions between glaciers, lakes and changing environmental conditions in the Arctic region.
References
Allen S.K., Zhang G., Wang W., Yao T., Bolch T., 2019. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach. Science Bulletin 64(7): 435-445. DOI: https://doi.org/10.1016/j.scib.2019.03.011
Andreassen L.M., Nagy T., Kjøllmoen B., Leigh J.R., 2022. An inventory of Norway’s glaciers and ice-marginal lakes from 2018-19 Sentinel-2 data. Journal of Glaciology 68(72): 1-22. DOI: https://doi.org/10.1017/jog.2022.20
Bednorz E., Jakielczyk M., 2014. Cyrkulacyjne warunki występowania ekstremalnych opadów atmosferycznych na Spitsbergenie. Badania Fizjograficzne A(65): 39-53.
Bhambri R., Misra A., Kumar A., Gupta A.K., Verma A., Tiwari S.K., 2018. Glacier lake inventory of Himachal Pradesh. In: Jayananda M., Sharma R., Srivastava P., Jayangondaperumal R. (eds), Himalayan geology. Wadia Institute of Himalayan Geology, Dehradun, 39(1): 1-32.
Błaszczyk M., Ignatiuk D., Uszczyk A., Cielecka-Nowak K., Grabiec M., Jania J.A., Moskalik M., Walczowski W., 2019. Freshwater input to the Arctic fjord Hornsund (Svalbard). Polar Research 38(3506): 1-18. DOI: https://doi.org/10.33265/polar.v38.3506
Blown I., Church M., 1985. Catastrophic lake drainage within the Homathko River basin, British Columbia. Canadian Geotechnical Journal 22: 551-563. DOI: https://doi.org/10.1139/t85-075
Buckel J., Otto J.C., Prasicek G., Keusching M., 2018. Glacial lakes in Austria – Distribution and formation since the Little Ice Age. Global and Planetary Change 164: 39-51. DOI: https://doi.org/10.1016/j.gloplacha.2018.03.003
Carrivick J.L., Sutherland J.L., Huss M., Purdie H., Stringer C.D., Grimes M., James W.H.M., Lorrey A.M., 2022. Coincident evolution of glaciers and ice-marginal proglacial lakes across the Southern Alps, New Zealand: Past, present and future. Global and Planetary Change 211: 1-13. DOI: https://doi.org/10.1016/j.gloplacha.2022.103792
Carrivick J.L., Tweed F.S., 2016. A global assessment of the societal impacts of glacier outburst floods. Global and Planetary Change 144: 1-16. DOI: https://doi.org/10.1016/j.gloplacha.2016.07.001
Dallmann W.K., Forwick M., Laberg J.S., Vorren T., 2015. Physical geography. In: Dallmann W.K. (ed.), Geoscience Atlas of Svalbard. Norsk Polarinstitutt, Tromsø, 148: 19-28.
Dudek J., Wieczorek I., Suwiński M.K., Strzelecki M.C., 2023. Paraglacial transformation and ice-dammed lake dynamics in a high Arctic glacier foreland, Gåsbreen, Svalbard. Land Degradation and Development 34(14): 1-20. DOI: https://doi.org/10.1002/ldr.4773
Dussaillant A., Benito G., Buytaert W., Carling P., Meier C., Espinoza F., 2010. Repeated glacial-lake outburst floods in Patagonia: An increasing hazard? Natural Hazards 54: 469-481. DOI: https://doi.org/10.1007/s11069-009-9479-8
Dye A., Bryant R., Rippin D., 2022. Proglacial lake expansion and glacier retreat in Arctic Sweden. Geografiska Annaler, Series A: Physical Geography 104(4): 268-287. DOI: https://doi.org/10.1080/04353676.2022.2121999
Emmer A., Klimeš J., Mergili M., Vilímek V., Cochachin A., 2016. 882 lakes of the Cordillera Blanca: An inventory, classification, evolution and assessment of susceptibility to outburst floods. Catena 147: 269-279. DOI: https://doi.org/10.1016/j.catena.2016.07.032
Emmer A., Vilímek V., Klimeš J., Cochachin A., 2014. Glacier retreat, lakes development and associated natural hazards in Cordilera Blanca, Peru. In: Shan W., Guo Y., Wang F., Marui H., Strom A. (eds), Landslides in cold regions in the context of climate change: 231-252. DOI: https://doi.org/10.1007/978-3-319-00867-7_17
Ewertowski M.W., 2014. Recent transformations in the high-Arctic glacier landsystem, Ragnarbreen, Svalbard. Geografiska Annaler Series A: Physical Geography 96(3): 265-285. DOI: https://doi.org/10.1111/geoa.12049
Ewertowski M.W., Tomczyk A.M., 2020. Reactivation of temporarily stabilized ice-cored moraines in front of polythermal glaciers: Gravitational mass movements as the most important geomorphological agents for the redistribution of sediments (a case study from Ebbabreen and Ragnarbreen, Svalbard. Geomorphology 350: 1-20. DOI: https://doi.org/10.1016/j.geomorph.2019.106952
Frydrych K., Zagórski P., 2024. Morphodynamics of Recherchefjorden accumulative coasts since the end of the Little Ice Age. Quaestiones Geographicae 43(1): 21-43. DOI: https://doi.org/10.14746/quageo-2024-0002
Furian W., Loibl D., Schneider C., 2021. Future glacial lakes in High Mountain Asia: An inventory and assessment of hazard potential from surrounding slopes. Journal of Glaciology 67(264): 653-670. DOI: https://doi.org/10.1017/jog.2021.18
Geyman E.C., van Pelt W.J.J., Maloof A.C., Aas H.F., Kohler J., 2022. Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature 601(7893): 374-379. DOI: https://doi.org/10.1038/s41586-021-04314-4
Goswami U.P., Goyal M.K., 2021. Assessment of glacial lake development and downstream flood impacts of critical glacial lake. Natural Hazards 109: 1027-1046. DOI: https://doi.org/10.1007/s11069-021-04866-8
How P., Messerii A., Matzler E., Santoro M., Wiesmann A., Caduff R., Langley K., Bojesen M.H., Paul F., Kaab A., Carrivick J.L., 2021. Greenland-wide inventory of ice marginal lakes using a multi-method approach. Scientific Reports 11(1): 1-13. DOI: https://doi.org/10.1038/s41598-021-83509-1
Jia G., Shevliakova E., Artaxo P., De Noblet-Ducoudré N., Houghton R., House J., Kitajima K., Lennard C., Popp A., Sirin A., Sukumar R., Verchot L., 2019. Land-climate interactions. In: Shukla P.R., Skea J., Calvo Buendia E., Masson-Delmotte V., Pörtner H.-O., Roberts D.C., Zhai P., Slade R., Connors S., van Diemen R., Ferrat M., Haughey E., Luz S., Neogi S., Pathak M., Petzold J., Portugal Pereira J., Vyas P., Huntley E., Kissick K., Belkacemi M., Malley J. (eds), Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC: 131-248.
Kavan J., Luláková P., Małecki J., Strzelecki M.C., 2023. Capturing the transition from marine to land-terminating glacier from the 126-year retreat history of Nordenskiöldbreen, Svalbard. Journal of Glaciology: 1-11. DOI: https://doi.org/10.1017/jog.2023.92
Kavan J., Wieczorek I., Tallentire G.D., Demidionov M., Uher J., Strzelecki M.C., 2022. Estimating suspended sediment fluxes from the largest glacial lake in Svalbard to fjord system using sentinel-2 data: Trebrevatnet case study. Water 14(12): 1-14. DOI: https://doi.org/10.3390/w14121840
Kjeldsen K.K., Mortensen J., Bendtsen J., Petersen D., Lennert K., Rysgaard S., 2014. Ice-dammed lake drainage cools and raises surface salinities in a tidewater outlet glacier fjord, west Greenland. Journal of Geophysical Research: Earth Surface 119(6): 1310-1321. DOI: https://doi.org/10.1002/2013JF003034
Loriaux T., Casassa G., 2013. Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context. Global and Planetary Change 102: 33-40. DOI: https://doi.org/10.1016/j.gloplacha.2012.12.012
Mędrek K., Gluza A., Siwek K., Zagórski P., 2014. Warunki meteorologiczne na stacji w Calypsobyen w sezonie letnim 2014 na tle wielolecia 1986-2011. Problemy Klimatologii Polarnej 24: 37-50.
Mölg N., Huggel C., Herold T., Storck F., Allen S., Haeberli W., Schaub Y., Odermatt D., 2021. Inventory and evolution of glacial lakes since the Little Ice Age: Lessons from the case of Switzerland. Earth Surface Processes and Landforms 46(13): 2551-2564. DOI: https://doi.org/10.1002/esp.5193
Murton J.B., 2021. What and where are periglacial landscapes? Permafrost and Periglacial Processes 32(2): 186-212. DOI: https://doi.org/10.1002/ppp.2102
Oliva M., Mercier D., Ruiz-Fernández J., McColl S., 2020. Paraglacial processes in recently deglaciated environments. Land Degradation and Development 31(15): 1871-1876. DOI: https://doi.org/10.1002/ldr.3283
Osuch M., Wawrzyniak T., 2017. Inter- and intra-annual changes in air temperature and precipitation in western Spitsbergen. International Journal of Climatology 37(7): 3082-3097. DOI: https://doi.org/10.1002/joc.4901
Paul F., Bolch T., 2019. Glacier changes since the Little Ice Age. In: Heckmann T., Morche D. (eds), Geomorphology of proglacial systems. Landform and sediment dynamics in recently deglaciated alpine landscapes. Springer: 22-42. DOI: https://doi.org/10.1007/978-3-319-94184-4_2
Planet Labs PBC, 2024. Planet Imagery, Education and Research Program, Inc. Online: developers.planet.com/docs/apis/data/sensors/ (accessed 15 February 2024).
Porter C., Howat I., Noh M.J., Husby E., Khuvis S., Danish E., Tomko K., Gardiner J., Negrete A., Yadav B., Klassen J., Kelleher C., Cloutier M., Bakker J., Enos J., Arnold G., Bauer G., Morin P., 2023. ArcticDEM, Version 4.1
Rachlewicz G., 2009. River floods in glacier-covered catchments of the high Arctic: Billefjorden Wijdefjorden, Svalbard. Norsk Geografisk Tidsskrift 63(2): 115-122. DOI: https://doi.org/10.1080/00291950902907835
Rachlewicz G., Styszyńska A., 2007. Comparison of the course of air temperature in Petuniabukta and Svalbard-Lufthavn (Isfjord, Spitsbergen) in the years 2001-2003, Problemy Klimatologii Polarnej. 17: 121-134.
Repelewska-Pękalowa J., Pękala K., Zagórski P., Superson J., 2013. Permafrost and periglacial processes. In: Zagórski P., Harasimiuk M., Rodzik J. (eds), The geographical environment of NW part of Wedel Jarlsberg land (Spitsbergen, Svalbard). Faculty of Earth Sciences and Spatial Management Maria Curie-Skłodowska University, Lublin: 166-191.
Rick B., McGrath D., Armstrong W., McCoy S.W., 2022. Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019. Cryosphere 16(1): 297-314. DOI: https://doi.org/10.5194/tc-16-297-2022
Russell A.J., Duller R., Mountney N.P., 2010. 11 Volcanogenic Jökulhlaups (glacier outburst floods) from Mýrdalsjökull: Impacts on proglacial environments. Developments in Quaternary Science 13: 181-207. DOI: https://doi.org/10.1016/S1571-0866(09)01311-6
Sakai A., 2012. Glacial lakes in the Himalayas: A review on formation and expansion processes. Global Environmental Research 16: 23-30.
Schöner M., Schöner W., 1996. Photogrammetrische und glaziologische Untersuchungen am Gåsbre: (Ergebnisse der Spitzbergenexpedition 1991). Geowissenschaftliehe Mitteilungen 42: 1-115.
Schöner W., Schöner M., 1997. Effects of glacier retreat on the outbursts of Goesvatnet, southwest Spitsbergen, Svalbard. Journal of Glaciology 43(144): 276-282. DOI: https://doi.org/10.3189/S0022143000003221
Schuler T.V., Dunse T., Østby T.I., Hagen J.O., 2014. Meteorological conditions on an Arctic ice cap-8 years of automatic weather station data from Austfonna, Svalbard. International Journal of Climatology 34(6): 2047-2058. DOI: https://doi.org/10.1002/joc.3821
Shugar D.H., Burr A., Haritashya U.K., Kargel J.S., Watson C.S., Kennedy M.C., Bevington A.R., Betts R.A., Harrison S., Strattman K., 2020. Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change 10(10): 939-945. DOI: https://doi.org/10.1038/s41558-020-0855-4
Sikdar P.K., Chakraborty S., Adhya E., Paul P.K., 2004. Land use/land cover changes and groundwater potential zoning in and around Raniganj coal mining area, Bardhaman District, West Bengal – A GIS and remote sensing approach. Journal of Spatial Hydrology 4(2): 1-24.
Urbański J.A., 2022. Monitoring and classification of high Arctic lakes in the Svalbard Islands using remote sensing. International Journal of Applied Earth Observation and Geoinformation 112: 1-13. DOI: https://doi.org/10.1016/j.jag.2022.102911
Veh G., Lützow N., Tamm J., Luna L.V., Hugonnet R., Vogel K., Geertsema M., Clague J.J., Korup O., 2023. Less extreme and earlier outbursts of ice-dammed lakes since 1900. Nature 614(7949): 701-707. DOI: https://doi.org/10.1038/s41586-022-05642-9
Vilímek V., Klimes J., Emmer A., Benesova M., 2015. Geomorphologic impacts of the glacial lake outburst flood from Lake No. 513 (Peru). Environmental Earth Sciences 73(9): 5233-5244. DOI: https://doi.org/10.1007/s12665-014-3768-6
Walder J.S., Costa J.E., 1996. Outburst floods from glacier-dammed lakes: The effect of mode of lake drainage on flood magnitude. Earth Surface Processes and Landforms 21(8): 701-723. DOI: https://doi.org/10.1002/(SICI)1096-9837(199608)21:8<701::AID-ESP615>3.0.CO;2-2
Wieczorek I., Kavan J., Wołoszyn A., Yde J., Stachnik Ł., Zagórski P., Strzelecki M.C., 2024. Development of a glacial lake system during high Arctic Paraglacial landscape transformation at Crammerbreane Glacier system, Svalbard. SSRN Electronic Journal (preprint). DOI: https://doi.org/10.2139/ssrn.4720879
Wieczorek I., Strzelecki M.C., Stachnik Ł., Yde J.C., Małęcki J., 2023. Post-Little Ice Age glacial lake evolution in Svalbard: Inventory of lake changes and lake types. Journal of Glaciology: 1-17. DOI: https://doi.org/10.1017/jog.2023.34
Wołoszyn A., Kasprzak M., 2023. Contemporary landscape transformation in a small Arctic catchment, Bratteggdalen, Svalbard. Polish Polar Research 44(3): 227-248. DOI: https://doi.org/10.24425/ppr.2023.144542
Wołoszyn A., Owczarek Z., Wieczorek I., Kasprzak M., Strzelecki M.C., 2022. Glacial outburst floods responsible for major environmental shift in Arctic coastal catchment, Rekvedbukta, Albert I Land, Svalbard. Remote Sensing 14(24): 1-20. DOI: https://doi.org/10.3390/rs14246325
Yao X., Liu S., Han L., Sun M., Zhao L., 2018. Definition and classification system of glacial lake for inventory and hazards study. Journal of Geographical Sciences 28(2): 193-205. DOI: https://doi.org/10.1007/s11442-018-1467-z
Zagórski P., Jarosz K., Superson J., 2020. Integrated assessment of shoreline change along the Calypsostranda (Svalbard) from remote sensing, field survey and GIS. Marine Geodesy 43(5): 433-471. DOI: https://doi.org/10.1080/01490419.2020.1715516
Ziaja W., Dudek J., Ostafin K., 2016. Landscape transformation under the Gåsbreen glacier recession since 1899, southwestern Spitsbergen. Polish Polar Research 37(2): 155-172. DOI: https://doi.org/10.1515/popore-2016-0010
Ziaja W., Ostafin K., 2015. Landscape-seascape dynamics in the isthmus between Sørkapp land and the rest of Spitsbergen: Will a new big Arctic island form? Ambio 44(4): 332-342. DOI: https://doi.org/10.1007/s13280-014-0572-1
License
Copyright (c) 2024 Iwo Wieczorek
This work is licensed under a Creative Commons Attribution 4.0 International License.