Impact of land use changes on collapsed pipes development in the loess gully (Lublin Upland, East Poland)
PDF

Keywords

piping
land reclamation
agrarian pattern changes
gully erosion
loess

How to Cite

Rodzik, J., Kołodyńska-Gawrysiak, R., Franczak, Łukasz, Zgłobicki, W., & Poesen, J. (2024). Impact of land use changes on collapsed pipes development in the loess gully (Lublin Upland, East Poland). Quaestiones Geographicae, 43(4), 17–33. https://doi.org/10.14746/quageo-2024-0042

Abstract

Subsurface erosion is a poorly recognized but important process for modelling and predicting gully erosion rates in loess areas. It is crucial to recognize the factors and mechanisms of soil piping and pipe collapse development. Our research is the first detailed description of the complex evolution of large collapsed pipes on the banks of a loess gully over 25 years (west part of Nałęczów Plateau, Lublin Upland). The objective of this study was to reconstruct the development of piping forms as a result of land use change. Detailed field observations and measurements after snowmelt and rainfall-runoff events formed the basis of the research. Sedimentary structures observed in the walls of recently collapsed pipes, filling up older piping forms, were studied. The human impact on the development of collapsed pipes has been significant. We found a multi-stage development of these forms with several cut and fill phases. An important factor influencing the formation and development of these forms was the change in land use (crop type and tillage direction). Farmers tried to reclaim collapsed pipes by filling them in with soil and incorporating them into the cropland. The resulting depressions had high infiltration rates resulting in a reactivation of soil piping processes. Increase of precipitation and the intensity of runoff caused the secondary stage of collapsed pipes development (with a volume ranging between 240 and 912 m3 per collapsed pipe). Changing runoff patterns as a result of human interventions decreased their activity, but caused the development of new (secondary) collapsed pipes.

https://doi.org/10.14746/quageo-2024-0042
PDF

References

Bernatek, A., 2015. The influence of piping on mid-mountain relief: a case study from the Polish Bieszczady Mts. (Eastern Carpathians). Carpathian Journal of Earth and Environmental Sciences 10: 107-120.

Bernatek-Jakiel A., Jakiel M., 2021. Identification of soil piping-related depressions using an airborne LiDAR DEM: Role of land use changes. Geomorphology 378: 107591. DOI: https://doi.org/10.1016/j.geomorph.2020.107591

Bernatek-Jakiel A., Jakiel M., Krzemień K., 2017. Piping dynamics in mid-altitude mountains under a temperate climate: Bieszczady Mts., Eastern Carpathians. Earth Surf. Process. Landforms 42: 1419-1433. DOI: https://doi.org/10.1002/esp.4160

Bernatek-Jakiel A., Kacprzak A., Stolarczyk M., 2016. Impact of soil characteristics on piping activity in a mountainous area under a temperate climate (Bieszczady Mts., Eastern Carpathians). Catena 141: 117-129. DOI: https://doi.org/10.1016/j.catena.2016.03.001

Bernatek-Jakiel A., Kondracka M., 2019. Detection of Soil Pipes Using Ground Penetrating Radar. Remote Sens. 11: 1864. DOI: https://doi.org/10.3390/rs11161864

Bernatek-Jakiel A., Poesen J., 2018. Subsurface erosion by soil piping: significance and research needs. Earth Science Reviews 185: 1107-1128. DOI: https://doi.org/10.1016/j.earscirev.2018.08.006

Bernatek-Jakiel A., Wrońska-Wałach D., 2018. Impact of piping on gully development in mid-altitude mountains under a temperate climate: a dendrogeomorphological approach. Catena 165: 320-332. DOI: https://doi.org/10.1016/j.catena.2018.02.012

Castillo C., Gómez J.A., 2016. A century of gully erosion research: Urgency, complexity and study approaches. Earth Science Reviews 160: 300-319. DOI: https://doi.org/10.1016/j.earscirev.2016.07.009

Desir G., Marín C., 2013. Role of erosion processes on the morphogenesis of a semiarid badland area. Bardenas Reales (NE Spain). Catena 106: 83-92. DOI: https://doi.org/10.1016/j.catena.2013.02.011

Dotterweich M., Rodzik J., Zgłobicki W., Schmitt A., Schmidtchen G., Bork H.-R., 2012. High resolution gully erosion and sedimentation processes, and land use changes since the Bronze Age and future trajectories in the Kazimierz Dolny area (Nałęczów Plateau, SE-Poland). Catena 95: 50-62. DOI: https://doi.org/10.1016/j.catena.2012.03.001

Faulkner H., 2006. Piping hazard on collapsible and dispersive soils in Europe. In: Boardman, J., Poesen, J. (eds), Soil Erosion in Europe. John Wiley & Sons, Ltd, Chichester: 537-562. DOI: https://doi.org/10.1002/0470859202.ch40

Faulkner H., 2013. Badlands in marl lithologies: A field guide to soil dispersion, subsurface erosion and piping-origin gullies. Catena 106: 42-53. DOI: https://doi.org/10.1016/j.catena.2012.04.005

Faulkner H., Alexander R., Teeuw R., Zukowskyj P., 2004. Variations in soil dispersivity across a gully head displaying shallow sub-surface pipes, and the role of shallow pipes in rill initiation. Earth Surf. Process. Landforms 29: 1143-1160. DOI: https://doi.org/10.1002/esp.1109

Frankowski Z., Grabowski D., 2006. Geologiczno-inżynierskie i geomorfologiczne uwarunkowania erozji wąwozowej w lessach w rejonie Kazimierza Dolnego (wąwóz Opolska Droga). Przegląd Geologiczny 54(9): 777-783.

Gardziel Z., Harasimiuk M., Rodzik J., 1996. Dynamika procesów geomorfologicznych w zlewni Grodarza i związane z nimi zagrożenia dla Kazimierza Dolnego. In: Kucharczyk M., (ed.) Małopolski Przełom Wisły – walory, zagrożenia, ochrona. UMCS, Lublin: 21-31.

Gardziel Z., Rodzik J., 2005. Rozwój wąwozów lessowych podczas wiosennych roztopów na tle układu pól (na przykładzie Kazimierza Dolnego). In: Kotarba A., Krzemień K., Święchowicz J. (eds), Współczesna ewolucja rzeźby Polski. 7 Zjazd Geomorfologów Polskich, 19-22.09.2005, Kraków: 125-132.

Gawrysiak L., Harasimiuk M., 2010. Spatial diversity of gully density of the Lublin Upland and Roztocze Hills (SE Poland). Annales UMCS B. 67(1): 27-43. DOI: https://doi.org/10.2478/v10066-012-0002-y

Harasimiuk M., Henkiel A., 1976. Wpływ budowy geologicznej i rzeźby podłoża na ukształtowanie pokrywy lessowej w zachodniej części Płaskowyżu Nałęczowskiego. Annales UMCS sec B, 30/31: 55-80.

Hosseinalizadeh M., Kariminejad N., Campetella G., Jalalifard A., Alinejad M., 2018. Spatial point pattern analysis of piping erosion in loess-derived soils in Golestan Province, Iran. Geoderma 328: 20-29. DOI: https://doi.org/10.1016/j.geoderma.2018.04.029

Janicki G., Rodzik J., Zgłobicki W., 2002. Geomorphic effects of land use changes (the case of the Gutanów loess catchment, Poland). Geogr. Čas. 54(1): 39-57.

Jones J.A.A., Cottrell C.I. 2007. Long-term changes in stream bank soil pipes and the effects of afforestation. Journal of Geophysical Research: Earth Surface, 112(F1). DOI: https://doi.org/10.1029/2006JF000509

Kaszewski B., 2008. Klimat. In: Uziak S., Turski R. (eds), Środowisko przyrodnicze Lubelszczyzny. LTN, Lublin: 75-111.

Kołodyńska-Gawrysiak R, Poesen J., Gawrysiak L., 2018. Assessment of long-term Holocene soil erosion rates in Polish loess areas using sedimentary archives from closed depressions. Earth Surface Processes and Landforms 43: 978-1000. DOI: https://doi.org/10.1002/esp.4296

Kołodyńska-Gawrysiak R., Poesen J., Rodzik J., Wężyk P., Zgłobicki W., 2024. Morphometric features and distribution of piping in the loess catchment of the Nałęczów Plateau, eastern Poland. Book of Abstracts. XIII Zjazd Geomorfologów Polskich, Łódź 17-20.06.2024.

Kowalik-Bodzak D.,1964. Wpływ podziału spadkowego, komasacji i parcelacji na zmianę układów przestrzennych wsi w powiecie puławskim od połowy XIX w. Dokumentacja Geograficzna 4: 97-152.

Llena M., Carreras S., Bernatek-Jakiel A., Ollero A., Nadal-Romero E., 2024. Agricultural land abandonment linked to pipe collapse and gully development: Reconstruction from archival SfM and LiDAR datasets. Geoderma 449: 116995. DOI: https://doi.org/10.1016/j.geoderma.2024.116995

Malik I., 2008. Dating of small gully formation and establishing erosion rates in old gullies under forest by means of anatomical changes in exposed tree roots (Southern Poland). Geomorphology 93: 421-436. DOI: https://doi.org/10.1016/j.geomorph.2007.03.007

Malinowski J., 1959. Wyniki badań geotechnicznych lessu miedzy Kazimierzem Dolnym a Nałęczowem. Geological Quarterly 3(2): 425-456.

Maruszczak H., 1954. Werteby obszarów lessowych Wyżyny Lubelskiej. Annales UMCS B, VIII: 123-237.

Maruszczak H., 1973. Erozja wąwozowa we wschodniej części pasa wyżyn południowopolskich. Zeszyty Problemowe Postępów Nauk Rolniczych 151: 15-30.

Maruszczak H., 1991. Podstawowe profile lessów w Polsce. Maria Curie-Sklodowska University, Lublin.

Penghong Z., Mingming G., Zhuoxin Ch., Xingyi Z., Shaoliang Z., Jiarui Q., Xin L., Lixin W., Zhaokai W., 2024. Seasonal change of tensile crack morphology and its spatial distribution along gully bank and gully slope in the Mollisols region of Northeast China. Geoderma 441: 116748 DOI: https://doi.org/10.1016/j.geoderma.2023.116748

Poesen J., 1989. Conditions for gully formation in the Belgian Loam Belt and some ways to control them. Soil Technology Series 1: 39-52.

Poesen J., 2018. Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms 43: 64-84. DOI: https://doi.org/10.1002/esp.4250

Poesen J., Nachtergaele J., Verstraeten G., Valentin C., 2003. Gully erosion and environmental change: importance and research needs. Catena 50: 91-133. DOI: https://doi.org/10.1016/S0341-8162(02)00143-1

Poesen J., Vandaele K., van Wesemael B., 1996. Contribution of gully erosion to sediment production in cultivated lands and rangelands. IAHS Publ. 236: 251-266.

Rafaeli O., Nahlieli A., Svoray T. 2023. Dynamics of subsurface soil erosion in a semiarid region: A time-series study of sinkhole area and morphology. Catena 233: 107511. DOI: https://doi.org/10.1016/j.catena.2023.107511

Rejman J., Rafalska-Przysucha A., Rodzik J., 2014. The Effect of Land Use Change on Transformation of Relief and Modification of Soils in Undulating Loess Area of East Poland. The Scientific World Journal, Article ID 341804: 1-11. DOI: https://doi.org/10.1155/2014/341804

Rodzik J., 2010. Influence of land use on gully system development (case study: Kolonia Celejów loess catchment. In: J. Warowna, A. Schmitt (eds), Human impact on upland landscapes of the Lublin region, Kartpol, Lublin: 181-194.

Rodzik J., Ciupa T., Janicki G., Kociuba W., Tyc A., Zgłobicki W., 2021. Współczesne przemiany rzeźby Wyżyn Polskich. In: Kostrzewski A., Krzemień K., Migoń P., Starkel L., Winowski M., Zwoliński Z. (eds), Współczesne przemiany rzeźby Polski, wyd. II. Bogucki Wyd Nauk., Poznań: 333-414. DOI: https://doi.org/10.12657/9788379863822-07

Rodzik J., Gajek G., Zgłobicki W., 2024. Loess Gullies of the Nałęczów Plateau—An Outcome of Human-Environment Interactions. In: Landscapes and landforms of Poland. Springer International Publishing, 457-468. DOI: https://doi.org/10.1007/978-3-031-45762-3_26

Rodzik J., Mroczek P., Wiśniewski T., 2014. Pedological analysis as a key for reconstructing primary loess relief — A case study from the Magdalenian site in Klementowice (eastern Poland). Catena 117: 50-59. DOI: https://doi.org/10.1016/j.catena.2013.09.001

Rodzik J., Zgłobicki W., 2010. Contemporary erosion processes in the Szczebrzeszyn Roztocze region. In: J. Warowna, A. Schmitt (eds), Human impact on upland landscapes of the Lublin region, Kartpol, Lublin, 181-194.

Rodzik J., Furtak T., Zgłobicki W., 2009. The impact of snowmelt and heavy rainfall runoff on erosion rates in a gully system, Lublin Upland, Poland. Earth Surf. Process. Landforms 34: 1938-1950. DOI: https://doi.org/10.1002/esp.1882

Schmitt A., Rodzik J., Zgłobicki W., Russok Ch., Dotterweich M., Bork H.-R., 2006. Time and scale of gully erosion in the Jedliczny Dol gully system, south-east Poland. Catena 68: 124-132. DOI: https://doi.org/10.1016/j.catena.2006.04.001

Superson J., Rodzik J., Reder J., 2014. Natural and human influence on loess gully catchment evolution: A case study from Lublin Upland, E Poland. Geomorphology 212: 28-40. DOI: https://doi.org/10.1016/j.geomorph.2013.09.011

Vanmaercke M., Panagos P., Vanwalleghem T., Hayas A., Foerster S., Borrelli P., Rossi M., Torr D., Casali J., Borselli L., Vigiak O., Maerker M., Haregeweyn N., De Geeter S., Zgłobicki W., Bielders Ch., Cerda A., Conoscenti Ch., de Figueiredo T., Evans B., Golosov V., Ionita I., Karydas Ch., Kertesz A., Krasa J., Le Bouteiller C., Radoane M., Ristic R., Rousseva S., Stankoviansky M., Stolte J., Stolz Ch., Bartley R., Wilkinson S.,Jarihani B., Poesen J., 2021. Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Science Reviews 218: 1-34 . DOI: https://doi.org/10.1016/j.earscirev.2021.103637

Vanmaercke M., Poesen J., Van Mele B., Demuzere M., Bruynseels A., Golosov V., Rodrigues Bezerra J., Bolysov S., Dvinskih A., Frankl A., Fuseina Y., Guerra A., Haregeweyn N., Ionita I., Fils Makanzu Imwangana, Moeyersons J., Moshe I., Nazari Samani A., Niacsui L., Nyssen J., Otsuki Y., Radoane M., Rysin I., Ryzhov Y., Yermolaev O., 2016. How fast do gully headcuts retreat? Earth-Science Reviews 154: 336-355. DOI: https://doi.org/10.1016/j.earscirev.2016.01.009

Verachtert E., Maetens W., Van Den Eeckhaut M., Poesen J., Deckers J., 2011. Soil loss rates due to piping erosion. Earth Surf. Process. Landforms 36: 1715-1725. DOI: https://doi.org/10.1002/esp.2186

Verachtert E., Van Den Eeckhaut M., Martínez-Murillo J.F., Nadal-Romero E., Poesen J., Devoldere S., Wijnants N., Deckers J., 2013. Impact of soil characteristics and land use on pipe erosion in a temperate humid climate: field studies in Belgium. Geomorphology 192: 1-14. DOI: https://doi.org/10.1016/j.geomorph.2013.02.019

Verachtert E., Van Den Eeckhaut M., Poesen J., Deckers J., 2010. Factors controlling the spatial distribution of soil piping erosion on loess-derived soils: A case study from central Belgium. Geomorphology 118: 339-348. DOI: https://doi.org/10.1016/j.geomorph.2010.02.001

Wilson G.V., Rigby J.R., Dabney S.M., 2015. Soil pipe collapses in a loess pasture of Goodwin Creek watershed. Mississippi: role of soil properties and past land use. Earth Surf. Process. Landforms 40: 1448-1463. DOI: https://doi.org/10.1002/esp.3727

Zgłobicki W., 2002. Dynamika współczesnych procesów denudacyjnych w północno-zachodniej części Wyżyny Lubelskiej. UMCS, Lublin.

Zgłobicki W., Baran-Zgłobicka B. 2011. Gullies as an indicator of human impact on loess landscape (Case study: North Western part of Lublin Upland, Poland). Zeitschrift für Geomorphologie 55, SI 1: 119-137. DOI: https://doi.org/10.1127/0372-8854/2011/0055S1-0042

Zgłobicki W., Baran-Zgłobicka B., 2012. Impact of loess relief on land use mosaic in SE Poland. Catena 96: 76-82. DOI: https://doi.org/10.1016/j.catena.2012.04.014

Zgłobicki W., Poesen J., Joshi V., Sóle-Benet A., De Geeter S., 2020. Gullies and badlands as geoheritage sites. Global Geographical Heritage, Geoparks and Geotourism, Springer. 147-172. DOI: https://doi.org/10.1007/978-981-15-4956-4_9

Zgłobicki W., Rodzik J., 2007. Heavy metals in the slope deposits of loess areas of the Lublin Upland (E Poland). Catena 71: 84-95. DOI: https://doi.org/10.1016/j.catena.2006.10.008

Zhu T.X., 2012. Gully and tunnel erosion in the hilly Loess Plateau region, China. Geomorphology 153-154: 144-155. DOI: https://doi.org/10.1016/j.geomorph.2012.02.019

Ziemnicki S., 1968. Melioracje przeciwerozyjne. PWRiL, Warszawa.