Sources of the aeolian material in periglacial conditions based on quartz grain analysis, Ebba Valley, Svalbard
PDF

Keywords

aeolian processes
polar desert
sedimentary environments
meteorological variables
statistical analysis
High Arctic landscape dynamics

How to Cite

Rymer, K. G., & Wachecka-Kotkowska, L. (2024). Sources of the aeolian material in periglacial conditions based on quartz grain analysis, Ebba Valley, Svalbard. Quaestiones Geographicae, 43(4), 179–191. https://doi.org/10.14746/quageo-2024-0034

Abstract

The research conducted in this study is an attempt to quantitatively and qualitatively supplement the still insufficient knowledge on aeolian processes under polar conditions, where some of the most visible and dynamic climate changes are occurring. This study presents the results of rounding and matting analysis of quartz grains collected from aeolian deposition traps located in the Ebba Valley, Svalbard. The results are based on four summer field campaigns (2015–2018). Quartz grains with a diameter of 0.8–1.0 mm were selected and subjected to further analysis under a microscope, which allowed them to be divided into six individual classes. The nature of the grains can largely indicate the environmental conditions in which the material was transported. The collected material was dominated by grains with a low degree of roundness, which may indicate relatively short fluvial or aeolian transport. The small amounts of typically matted quartz grains may indicate low environmental dynamics and short transport, as well as the fact that large amounts of the material are blown from the valley interior to the nearby bay and fjord. This study highlights the importance of a fresh sediment supply from two main sources (i.e., moraines and rivers) and their subsequent aeolian redistribution, particularly in a wind-channelled valley environment. These findings underscore the complex interactions between aeolian processes and environmental conditions in cold regions. Climate change may significantly affect the magnitude of aeolian processes. Further research is needed to refine these correlations and enhance the understanding of sedimentary dynamics in polar settings.

https://doi.org/10.14746/quageo-2024-0034
PDF

Funding

The study was conducted at Adam Mickiewicz Polar Station ‘Petuniabukta’ (AMUPS) and was funded by the National Science Centre (Grant No. 2014/15/N/ST10/00825).

References

Beylich A.A., Dickson J.C., Zwolinski Z., 2016. Source-to-sink fluxes in undisturbed cold environments. Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/CBO9781107705791

Blatt H., Middleton G., Murray R., 1980. Origin of sedimentary rocks. Prentice-Hall, Englewood Cliffs.

Blott S.J., Pye K., 2001. Grain size distribution and statistics of unconsolidated sediments. Earth Surface Processes and Landforms 26: 1237-1248. DOI: https://doi.org/10.1002/esp.261

Boggs S., 2009. Petrology of sedimentary rocks. Cambridge University Press, Cambridge.

Borysiak J., Pleskot K., Rachlewicz G., 2020. Dryas aeolian landforms in Arctic deflationary tundra, central Spitsbergen. Polish Polar Research 41(1): 41-68. DOI: https://doi.org/10.24425/ppr.2020.132569

Brookfield M.E., 2011. Aeolian processes and features in cool climates, In: Martini I.P., French H.M., Pérez Alberti A. (eds), Ice-marginal and periglacial processes and sediments. Geological Society, London: 241-258. DOI: https://doi.org/10.1144/SP354.16

Buchwal A., Rachlewicz G., Fonti P., Cherubini P., Gaertner H., 2013. Temperature modulates intra-plant growth of Salix Polaris from a high Arctic site (Svalbard). Polar Biology 36(9): 1305-1318. DOI: https://doi.org/10.1007/s00300-013-1349-x

Cailleux A., 1942. Les action eoliennes periglaciaires en Europe. Mémoires de la Société géologique de France 41: 1-176.

Csavina J., Field J., Félix O., Corral-Avitia A.Y., Sáez A.E., Betterton E.A., 2014. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Science of the Total Environment 487: 82-90. DOI: https://doi.org/10.1016/j.scitotenv.2014.03.138

Dallmann W.K., Hjelle A., Ohta Y., Salvigsen O., Balashov Y.A., Maher H.D. Jr., 2002. Geological map of Svalbard 1: 100,000, sheet B9G Adventdalen. Norwegian Polar Institute.

Elvebakk A., 2005. A vegetation map of Svalbard on the scale 1: 3.5 million. Phytocoenologia 35(4): 951-967. DOI: https://doi.org/10.1127/0340-269X/2005/0035-0951

Folk R.L., 1980. Petrology of sedimentary rocks. Hemphill Publishing Company, Austin.

Førland E.J., Benestad R., Hanssen-Bauer I., Haugen J.E., Skaugen T.E., 2011. Temperature and precipitation development at Svalbard 1900-2100. Advances in Meteorology 2011(893790): 14. DOI: https://doi.org/10.1155/2011/893790

Goździk J., 1980. Zastosowanie morfoskopii i graniformametrii do badań osadów w kopalni węgla brunatnego “Bełchatów”. Studia Regionalne IV(IX): 101-104.

Goździk J.S., 1995. Wybrane metody kształtu ziarn piasków do celów paleogeograficznych i stratygraficznych, In: Mycielska-Dowgiałło E., Rutkowski J. (eds), Badania osadów czwartorzędowych. Wybrane metody i interpretacja wyników. WGiSR, UW, Warszawa: 115-132.

Harland W.B., 1997. The geology of Svalbard. Geological Society of London, London.

Johansen B.E., Karlsen S.R., Tømmervik H., 2012. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Record 48(1): 47-63. DOI: https://doi.org/10.1017/S0032247411000647

Kalińska E., 2019. Understanding a continuous inland aeolian deposition: a closer look into a chronological and sedimentary record of the north-eastern European Sand Belt. Bulletin of Geography. Physical Geography Series 16(1): 31−43. DOI: https://doi.org/10.2478/bgeo-2019-0003

Kalińska E., Hang T., Jõeleht A., Olo S., Nartišs M., Adamiec G., 2019. Macro- and micro-scale study and chronology of Late Weichselian aeolian sediment in Estonia, north-eastern European Sand Belt. International Journal of Earth Science 108(6): 2021-2035. DOI: https://doi.org/10.1007/s00531-019-01746-2

Kalińska E., Nartišs M., 2014. Pleistocene and Holocene aeolian sediments of different location and geological history: a new insight from rounding and frosting of quartz grains. Quaternary International 328-329: 311-322. DOI: https://doi.org/10.1016/j.quaint.2013.08.038

Kalińska-Nartiša E., Lamsters K., Karušs J., Krievans M., Rečs A., Meija R., 2017. Quartz grain features in modern glacial and proglacial environments: a microscopic study from the Russell Glacier, southwest Greenland. Polish Polar Research 38(3): 265-289. DOI: https://doi.org/10.1515/popore-2017-0018

Kavan J., Laska K., Nawrot A., Wawrzyniak T., 2020. High latitude dust transport altitude pattern revealed from deposition on snow, Svalbard. Atmosphere 11: 1318. DOI: https://doi.org/10.3390/atmos11121318

Kłysz P., Lindner L., Marks L., Wysokiński L., 1989. Late Pleistocene and Holocene relief remodeling in the Ebbadalen-Nordenskiöldbreen region in Olav V Land, central Spitsbergen. Polish Polar Research 10(3): 277-301.

Kowalkowski A., Kocoń J., 1991. Procesy wietrzenia na Spitsbergenie na podstawie badań w skaningowym mikroskopie elektronowym, In: Kostrzewski A. (ed), Geneza, litologia i stratygrafia utworów czwartorzędowych. Geografia 50. Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza, Poznań: 77-104.

Krumbein W.C., 1941. Measurement and geological significance of shape and roundness of sedimentary particles. Journal of Sedimentary Petrology 11(2): 64-72. DOI: https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D

Long A.J., Strzelecki M.C., Lloyd J.M., Bryant C.L., 2012. Dating High Arctic Holocene relative sea level changes using juvenile articulated marine shells in raised beaches. Quaternary Science Reviews 48: 61-66. DOI: https://doi.org/10.1016/j.quascirev.2012.06.009

Łopuch M., Jary Z., 2023. Sand sources and migration of the dune fields in the central European Sand Belt – a pattern analysis approach. Geomorphology 439: 108856. DOI: https://doi.org/10.1016/j.geomorph.2023.108856

Łopuch M., Sokołowski R.J., Jary Z., 2023. Factors controlling the development of cold-climate dune fields within the central part of the European Sand Belt – insights from morphometry. Geomorphology 420: 108514. DOI: https://doi.org/10.1016/j.geomorph.2022.108514

Lyu Q., Shunshe L., Yulong G., Jinhua F., Xiaobing N., Shengbin F., Shixiang L., 2019. A new method of lithologic identification and distribution characteristics of fine – grained sediments: a case study in southwest of Ordos Basin, China. Open Geosciences 11: 17-28. DOI: https://doi.org/10.1515/geo-2019-0002

Mahaney W.C., 2002. Atlas of sand grain surface textures and applications. Oxford University Press, Oxford.

Małecki J., 2015. Glacio-meteorology of Ebbabreen, Dickson Land, central Svalbard, during 2008-2010 melt seasons. Polish Polar Research 36: 145-161. DOI: https://doi.org/10.1515/popore-2015-0010

Małecki J., 2019. Meteorology and summer net radiation of an Arctic alpine glacier: Svenbreen, Svalbard. International Journal of Meteorology 39(10): 4107-4124. DOI: https://doi.org/10.1002/joc.6062

Müller M., Thiel C., Kühn P., 2016. Holocene palaeosols and aeolian activities in the Umimmalissuaq valley, West Greenland. The Holocene 26(7): 1149-1161. DOI: https://doi.org/10.1177/0959683616632885

Mycielska-Dowgiałło E., Woronko B., 1998. Analiza obtoczenia i zmatowienia powierzchni ziarn kwarcowych frakcji piaszczystej i jej wartość interpretacyjna. Przegląd Geologiczny 46(12): 1275-1281.

Pettijohn F.J., Potter P.E., Siever R., 1987. Sand and Sandstone. Springer-Verlag, New York. DOI: https://doi.org/10.1007/978-1-4612-1066-5

Prach K., Klimešová J., Košnar J., Redčenko O., Hais M., 2012. Variability of contemporary vegetation around Petuniabukta, central Spitsbergen. Polish Polar Research 33(4): 383-394. DOI: https://doi.org/10.2478/v10183-012-0026-z

Przybylak R., Araźny A., Gluza A., Hojan M., Migała K., Sikora S., Siwek K., Zwoliński Z., 2006. Porównanie warunków meteorologicznych na zachodnim wybrzeżu Spitsbergenu w sezonie letnim 2005 r. Problemy Klimatologii Polarnej 16: 125-138.

Przybylak R., Araźny A., Nordli Ø, Finkelnburg R., Kejna M., Budzik T., Migała K., Sikora S., Puczko D., Rymer K., Rachlewicz G., 2014. Spatial distribution of air temperature on Svalbard during 1 year with campaign measurements. International Journal of Climatology 34: 3702-3719. DOI: https://doi.org/10.1002/joc.3937

Pye K., Tsoar H., 2009. Aeolian Sand and Sand Dunes. Springer, Berlin. DOI: https://doi.org/10.1007/978-3-540-85910-9

Rachlewicz G., 2003. Warunki meteorologiczne w Zatoce Petunia (Spitsbergen środkowy) w sezonach letnich 2000 i 2001. Problemy Klimatologii Polarnej 13: 127-138.

Rachlewicz G., 2009. Contemporary sediment fluxes and relief changes in high Arctic glacierized valley systems (Billefjorden, Central Spitsbergen). Wydawnictwo Naukowe UAM, Poznań.

Rachlewicz G., Styszyńska A., 2007. Porównanie przebiegu temperatury powietrza w Petuniabukta i Svalbard-Lufthavn (Isfjord, Spitsbergen) w latach 2001-2003. Problemy Klimatologii Polarnej 17: 121-134.

Rachlewicz G., Szczuciński W., 2008. Changes in thermal structure of permafrost active layer in a dry polar climate, Petuniabukta, Svalbard. Polish Polar Research 29: 261-278.

Rasmussen C.F., Christiansen H.H., Buylaert J.-P., Cunningham A., Schneider R., Knudsen M.F., Stevens T., 2023. High-resolution OSL dating of loess in Adventdalen, Svalbard: Late Holocene dust activity and permafrost development. Quaternary Science Reviews 310: 108137. DOI: https://doi.org/10.1016/j.quascirev.2023.108137

Rymer K., Rachlewicz G., 2014. Thermal dynamics of the permafrost active layer in Ebba valley (Central Spitsbergen) in the years 2009-2012. International Journal of Applied and Natural Sciences 3: 79-86.

Rymer K.G., Rachlewicz G., Buchwal A., Temme A.J.A.M., Reimann T., van der Meij W.M., 2022. Contemporary and past aeolian deposition rates in periglacial conditions (Ebba Valley, central Spitsbergen). CATENA 211: 105974. DOI: https://doi.org/10.1016/j.catena.2021.105974

Seppälä M., 2004. Wind as a geomorphic agent in cold climates. Cambridge University Press, Cambridge.

Sobota I., Weckwerth P., Grajewski T., 2020. Rain-on-snow (ROS) events and their relation to snowpack and ice layer changes on small glaciers in Svalbard, the high Arctic. Journal of Hydrology 590: 125279. DOI: https://doi.org/10.1016/j.jhydrol.2020.125279

Stawska M., 2017. Impacts of geomorphic disturbances on plant colonization in Ebba Valley, central Spitsbergen, Svalbard. Quaestiones Geographicae 36(1): 51-64. DOI: https://doi.org/10.1515/quageo-2017-0004

van der Meij W.M., Temme A.J.A.M., de Kleijn C.M.F.J.J., Reimann T., Heuvelink G.B.M., Zwoliński Z., Rachlewicz G., Rymer K., Sommer M., 2016. Arctic soil development on a series of marine terraces on Central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach. SOIL 2: 221-240. DOI: https://doi.org/10.5194/soil-2-221-2016

Wachecka-Kotkowska L., 2004. Ewolucja doliny Luciąży – uwarunkowania klimatyczne a lokalne (in Polish, summary in English: evolution of the Luciąża River valley – local and climatic conditions). Acta Geographica Lodziensia 86: 161.

Wachecka-Kotkowska L., 2015. Rozwój rzeźby obszaru między Piotrkowem Trybunalskim, Radomskiem a Przedborzem w czwartorzędzie (in Polish, summary in English: Relief development of the area between Piotrków Trybunalski, Radomsko and Przedbórz in the Quaternary). Wydawnictwo Uniwersytetu Łódzkiego, Łódź. 126. DOI: https://doi.org/10.18778/7969-866-0

Wachecka-Kotkowska L., Krzyszkowski D., Król E., Klaczak K., 2014. Middle Weichselian Pleniglacial fluvial erosion and sedimentation in the Krasówka river valley, Szczerców field, Bełchatów open cast mine, central Poland. Annales Societatis Geologorum Poloniae 84(4): 323-340.

Warrier A.K., Pednekar H., Mahesh B.S., Mohan R., Gazi S., 2016. Sediment grain size and surface textural observations of quartz grains in late quaternary lacustrine sediments from Schirmacher Oasis, East Antarctica: Paleoenvironmental significance. Polar Science 10(1): 89-100. DOI: https://doi.org/10.1016/j.polar.2015.12.005

Woronko B., Bujak Ł, 2018. Quaternary aeolian activity of Eastern Europe (a Poland case study). Quaternary International 478: 75-96. DOI: https://doi.org/10.1016/j.quaint.2017.03.058

Woronko B., Zieliński P., Sokołowski R.J., 2015. Climate evolution during the Pleniglacial and Late Glacial as recorded in quartz grain morphoscopy of fluvial to aeolian successions of the European Sand Belt. Geologos 21(2): 89-103. DOI: https://doi.org/10.1515/logos-2015-0005

Zhang T., Li D., East A.E., Walling D.E., Lane S., Overeem I., Beylich A.A., Koppes M., Lu X., 2022. Warming-driven erosion and sediment transport in cold regions. Nature Reviews Earth & Environment 3: 832-851. DOI: https://doi.org/10.1038/s43017-022-00362-0

Zieliński P., Sokołowski R.J., Woronko B., Jankowski M., Fedorowicz S., 2015. The depositional conditions of the fluvio-aeolian succession during the last climate minimum based on the examples from Poland and NW Ukraine. Quaternary International 386: 30-41. DOI: https://doi.org/10.1016/j.quaint.2014.08.013