Estimation of morphometric parameters of lakes based on satellite imagery data: Implications of relationships between lakes in the arid region of western Mongolia, Central Asia
Journal cover Quaestiones Geographicae, volume 44, no. 1, year 2025, title Quaestiones Geographicae
PDF

Keywords

satellite image
hydropower plant
lake morphometric changes
artificial lake
environmental effect
Khyargas Lake basin

How to Cite

Enkhbold, A., Vandansambuu, B., Yadamsuren, G., Dorjsuren, B., Dorligjav, S., Gonchigjav, Y., … Sumiya, E. (2025). Estimation of morphometric parameters of lakes based on satellite imagery data: Implications of relationships between lakes in the arid region of western Mongolia, Central Asia. Quaestiones Geographicae, 44(1), 21–38. https://doi.org/10.14746/quageo-2025-0002

Abstract

The relationship between reservoirs and naturally formed lakes in Mongolia has not been previously studied. This research explores potential future environmental impacts, both positive and negative, in western Mongolia. The study employs morphological analysis (MA), normalised difference water index (NDWI), volume analysis and statistical analysis of water. In the case of Airag Lake and an artificially created lake, temporal changes in lake surface area and volume exhibit inverse trends. The correlation between changes in lake area over time is highly negative (R = −0.96, p < 0.01 for the surface area), which is attributed to a decrease in Airag Lake’s area and volume during the lake water accumulation period from 2007 to 2011 and countered by an increase in Gegeen Lake’s area and volume. Conversely, the surface area of Khyargas Lake shows a strong positive correlation (R = 0.94, p < 0.0001) with Airag Lake’s area and a strong negative correlation (R = −0.88, p < 0.0001) with Gegeen Lake’s area during the period from 2007 to 2021. Based on satellite data, our findings suggest a negative relationship between changes in lake surface area and volume, indicating recent significant human impacts on lake water balance. This research explores the implications of hydropower dams and reservoirs in the region, as well as environmental concerns within the context of power production.

https://doi.org/10.14746/quageo-2025-0002
PDF

Funding

This work has been done within the frame- work of the project (P2023-4569) supported by the National University of Mongolia. Additionally, this study was carried out as part of the basic re- search project “New geomorphological subdivi- sion of lake districts in Mongolia” implemented by the Mongolian Foundation for Science and Technology from 2024 to 2026.

References

Ahmed I.A., Baig M.R.I., Talukdar S., Asgher M.S., Usmani T.M., Ahmed S., Rahman A., 2021. Lake water volume calculation using time series LANDSAT satellite data: A geospatial analysis of Deepor Beel Lake, Guwahati. Frontiers in Engineering and Built Environment 1(1): 107-130. DOI: https://doi.org/10.1108/FEBE-02-2021-0009

Amgalan M., Matsumoto T., Ulaanbaatar T., Nandintsetseg N., Erdenesukh S., Sandelger D., Altanbold E., 2020. Estimation of evaporation from Ogii Lake using the energy budget method. Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research) 76(5): 301-309. DOI: https://doi.org/10.2208/jscejer.76.5_I_301

Bacanin N., Bezdan T., Tuba E., Strumberger I., Tuba M., 2020. Optimizing convolutional neural network hyperparameters by enhanced swarm intelligence metaheuristics. Algorithms 13(3): 67. DOI: https://doi.org/10.3390/a13030067

Baterdene A., Nagao S., Zorigt B., Ochir A., Fukushi K., Davaasuren D., Gankhurel B., Munkhsuld E., Tsetsgee S., Yunden A., 2022. Seasonal variation and vertical distribution of inorganic nutrients in a small artificial lake, Lake Bulan, in Mongolia. Water 14(12): 1916. DOI: https://doi.org/10.3390/w14121916

Bijeesh T.V., Narasimhamurthy K.N., 2020. Surface water detection and delineation using remote sensing images: A review of methods and algorithms. Sustainable Water Resources Management 6(4): 68. DOI: https://doi.org/10.1007/s40899-020-00425-4

Busker T., de Roo A., Gelati E., Schwatke C., Adamovic M., Bisselink B., Pekel J.F., Cottam A., 2019. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrology and Earth System Sciences 23(2): 669-690. DOI: https://doi.org/10.5194/hess-23-669-2019

Chen Y., Zhang X., Fang G., Li Z., Wang F., Qin J., Sun F., 2020. Potential risks and challenges of climate change in the arid region of northwestern China. Regional Sustainability 1(1): 20-30. DOI: https://doi.org/10.1016/j.regsus.2020.06.003

Chipman J.W., 2019. A multisensor approach to satellite monitoring of trends in lake area, water level, and volume. Remote Sensing 11(2): 158. DOI: https://doi.org/10.3390/rs11020158

Davaa D., 2015. Surface water regime and resources in Mongolia. Admon Printing, Ulaanbaatar: 120-122.

Davaa G., 2018. Assessment of the water resources of Mongolian lakes based on land and satellite data, and a feasibility study for continuous monitoring. Institute of Water, Climate and Environmental Research and Information, Consulting Services Report, Ulaanbaatar: 33-54.

Dingjun L., Altanbold E., Batsuren D., Tuvshin G., Yumchmaa G., Boldbayar R., Gansukh Y., 2023. Changes in the area of lakes in different natural regions of Mongolia and climate effect. Geographical Issues 23(01): 4-21. DOI: https://doi.org/10.22353/.v23i01.1571

Dorjsuren B., Yan D., Wang H., Chonokhuu S., Enkhbold A., Davaasuren D., Girma A., Abiyu A., Jing L., Gedefaw M., 2018. Observed trends of climate and land cover changes in Lake Baikal basin. Environmental Earth Sciences 77: 1-12. DOI: https://doi.org/10.1007/s12665-018-7812-9

Dorjsuren B., Zemtsov V.A., Batsaikhan N., Demberel O., Yan D., Hongfei Z., Yadamjav O., Chonokhuu S., Enkhbold A., Ganzorig B., Bavuu E., 2024. Trend analysis of hydro-climatic variables in the Great Lakes Depression region of Mongolia. Journal of Water and Climate Change 15(3): 940-957. DOI: https://doi.org/10.2166/wcc.2024.379

Dorjsuren B., Zemtsov V.A., Batsaikhan N., Yan D., Zhou H., Dorligjav S., 2023. Hydro-climatic and vegetation dynamics spatial-temporal changes in the great lakes depression region of Mongolia. Water 15(21): 3748. DOI: https://doi.org/10.3390/w15213748

Dörnhöfer K., Oppelt N., 2016. Remote sensing for lake research and monitoring – Recent advances. Ecological Indicators 64: 105-122. DOI: https://doi.org/10.1016/j.ecolind.2015.12.009

Duan Z., Bastiaanssen W.G.M., 2013. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment 134: 403-416. DOI: https://doi.org/10.1016/j.rse.2013.03.010

Emami H., Zarei A., 2021. Modelling lake water’s surface changes using environmental and remote sensing data: A case study of Lake Urmia. Remote Sensing Applications: Society and Environment 23: 100594. DOI: https://doi.org/10.1016/j.rsase.2021.100594

Enkhbold A., Dingjun L., Ganbold B., Yadamsuren G., Tsasanchimeg B., Dorligjav S., Nyamsuren O., Dorjsuren B., Gerelmaa T., Dashpurev B., Boldbayar R., 2024. Changes in morphometric parameters of lakes in different ecological zones of Mongolia: Implications of climate change. Climate Research 92: 79-95. DOI: https://doi.org/10.3354/cr01734

Enkhbold A., Khukhuudei U., Doljin D., 2021. Morphological classification and origin of lake depressions in Mongolia. Proceedings of the Mongolian Academy of Sciences 61(02): 35-43. DOI: https://doi.org/10.5564/pmas.v61i02.1758

Enkhbold A., Khukhuudei U., Kusky T., Tsermaa B., Doljin D., 2022. Depression morphology of Bayan Lake, Zavkhan province, Western Mongolia: Implications for the origin of lake depression in Mongolia. Physical Geography 43(6): 727-752. DOI: https://doi.org/10.1080/02723646.2021.1899477

Fang J., Bai Y., Wu J., 2015. Towards a better understanding of landscape patterns and ecosystem processes of the Mongolian Plateau. Landscape Ecology 30: 1573-1578. DOI: https://doi.org/10.1007/s10980-015-0277-2

Finkl C.W., Benedet L., Andrews J.L., 2005. Interpretation of seabed geomorphology based on spatial analysis of high-density airborne laser bathymetry. Journal of Coastal Research 21(3): 501-514. DOI: https://doi.org/10.2112/05-756A.1

Gao B.C., 1996. NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58(3): 257-266. DOI: https://doi.org/10.1016/S0034-4257(96)00067-3

Gurnell A.M., 1998. The hydrogeomorphological effects of beaver dam-building activity. Progress in Physical Geography 22(2): 167-189. DOI: https://doi.org/10.1177/030913339802200202

Harmar O.P., Clifford N.J., Thorne C.R., Biedenharn D.S., 2005. Morphological changes of the Lower Mississippi River: Geomorphological response to engineering intervention. River Research and Applications 21(10): 1107-1131. DOI: https://doi.org/10.1002/rra.887

Kang S., Lee G., Togtokh C., Jang K., 2015. Characterizing regional precipitation-driven lake area change in Mongolia. Journal of Arid Land 7: 146-158. DOI: https://doi.org/10.1007/s40333-014-0081-x

Kumar A., Yang T., Sharma M.P., 2019. Greenhouse gas measurement from Chinese freshwater bodies: A review. Journal of Cleaner Production 233: 368-378. DOI: https://doi.org/10.1016/j.jclepro.2019.06.052

Lebedev S.A., Shevyakova O.P., Bedanokov M.K., 2020. Seasonal and Interannual Variability of the Krasnodar Reservoir Water Level Based on Satellite Altimetry Data. In: Bedanokov, M.K., Lebedev, S.A., Kostianoy, A.G. (eds) The Republic of Adygea Environment. The Handbook of Environmental Chemistry, vol 106. Springer, Cham. DOI: https://doi.org/10.1007/698_2020_588

Lehmkuhl F., Klinge M., Rother H., Hülle D., 2016. Distribution and timing of Holocene and late Pleistocene glacier fluctuations in western Mongolia. Annals of Glaciology 57(71): 169-178. DOI: https://doi.org/10.3189/2016AoG71A030

Lehner B., Messager M.L., Korver M.C., Linke S., 2022. Global hydro-environmental lake characteristics at high spatial resolution. Scientific Data 9(1): 351. DOI: https://doi.org/10.1038/s41597-022-01425-z

Lin Y., Li X., Zhang T., Chao N., Yu J., Cai J., Sneeuw N., 2020. Water volume variations estimation and analysis using multisource satellite data: A case study of Lake Victoria. Remote Sensing 12(18): 3052. DOI: https://doi.org/10.3390/rs12183052

Liu X., Shi Z., Huang G., Bo Y., Chen G., 2020. Time series remote sensing data-based identification of the dominant factor for inland lake surface area change: Anthropogenic activities or natural events? Remote Sensing 12(4): 612. DOI: https://doi.org/10.3390/rs12040612

Lu S., Ouyang N., Wu B., Wei Y., Tesemma Z., 2013. Lake water volume calculation with time series remote-sensing images. International Journal of Remote Sensing 34(22): 7962-7973. DOI: https://doi.org/10.1080/01431161.2013.827814

Luo R., Yuan Q., Yue L., Shi X., 2020. Monitoring recent lake variations under climate change around the Altai Mountains using multimission satellite data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14: 1374-1388. DOI: https://doi.org/10.1109/JSTARS.2020.3035872

Luo X., Tong X., Hu Z., 2021. An applicable and automatic method for earth surface water mapping based on multispectral images. International Journal of Applied Earth Observation and Geoinformation 103: 102472. DOI: https://doi.org/10.1016/j.jag.2021.102472

Mady B., Lehmann P., Gorelick S.M., Or D., 2020. Distribution of small seasonal reservoirs in semi-arid regions and associated evaporative losses. Environmental Research Communications 2(6): 061002. DOI: https://doi.org/10.1088/2515-7620/ab92af

McFeeters S.K., 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17(7): 1425-1432. DOI: https://doi.org/10.1080/01431169608948714

McFeeters S.K., 2013. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing 5(7): 3544-3561. DOI: https://doi.org/10.3390/rs5073544

Melesse A.M., Weng Q., Thenkabail P.S., Senay G.B., 2007. Remote sensing sensors and applications in environmental resources mapping and modelling. Sensors 7(12): 3209-3241. DOI: https://doi.org/10.3390/s7123209

Mendsaihan B., Dulmaa A., Krylov A.V., Kosolapov D.B., Slynko Y.V., Prokin A.A., Demidsereeter S., Lebedeva D.L., Altantsetseg B., Dgebuadze Y.Y., 2016. Formation of the lake-type ecosystem in semidesert zone: Tayshir Reservoir in the Zavkhan River (Western Mongolia). Arid Ecosystems 6: 213-219. DOI: https://doi.org/10.1134/S2079096116030082

Ochir A., Munkhjargal M., Bat-Erdene A., Tsetsgee S., 2013. Zavkhan river and its catchment area delineation using satellite image. Journal of Water Resource and Protection 5(10): 1-11.

Oyunbaatar D., Erdenebayar B., Davaa G., Saikhanjargal D., 2017. Recent changes of water regime and resource of the Ganga Lake and related some socio-economic aspects. Modern Environmental Science and Engineering 3(7): 482-491. DOI: https://doi.org/10.15341/mese(2333-2581)/07.03.2017/008

Oyunbaatar D., Galbaatar D., Munkhjargal S., 2011. Impact of Zavkhan River Regime Reserve and Ulaanboom hydroelectric power plant on climate change. In: Conference of Water Resources and Permafrost in Temperate Regions, Murun City, Khuvsgul Province, Mongolia: 116-122.

Pi X., Luo Q., Feng L., Xu Y., Tang J., Liang X., Ma E., Cheng R., Fensholt R., Brandt M., Cai X., 2022. Mapping global lake dynamics reveals the emerging roles of small lakes. Nature Communications 13(1): 5777. DOI: https://doi.org/10.1038/s41467-022-33239-3

Purevdorj Z., Jargal N., Ganbold O., Munkhbayar M., Purevee E., Jargalsaikhan A., Paik I.H., Paek W.K., Lee J.W., 2023. Spatial and temporal variations in waterfowl assemblage structures in Mongolian lakes and the changes linked to the gradient of lake surface areas. Diversity 15(3): 334. DOI: https://doi.org/10.3390/d15030334

Purevdorj Z., Paek W.K., Munkhbayar M., Ganbold O., Bing G.C., Jargalsaikhan A., Purevee E., Paik I.H., Choi W.S., Jargal N., Lee J.W., 2019. The avifaunal survey at important bird areas in western Mongolia. Journal of the Korean Society of Ornithology 26(1): 7-15. DOI: https://doi.org/10.30980/KJO.2019.6.26.1.7

Qi M., Liu S., Wu K., Zhu Y., Xie F., Jin H., Gao Y., Yao X., 2022. Improving the accuracy of glacial lake volume estimation: A case study in the Poiqu basin, central Himalayas. Journal of Hydrology 610: 127973. DOI: https://doi.org/10.1016/j.jhydrol.2022.127973

Qi Y., Lian X., Wang H., Zhang J., Yang R., 2020. Dynamic mechanism between human activities and ecosystem services: A case study of Qinghai lake watershed, China. Ecological Indicators 117: 106528. DOI: https://doi.org/10.1016/j.ecolind.2020.106528

Rousta I., Sharif M., Heidari S., Kiani A., Olafsson H., Krzyszczak J., Baranowski P., 2023. Climatic variables impact on inland lakes water levels and area fluctuations in an arid/semi-arid region of Iran, Iraq, and Turkey based on the remote sensing data. Earth Science Informatics 16(2): 1611-1635. DOI: https://doi.org/10.1007/s12145-023-00995-9

Saberioon M., Brom J., Nedbal V., Souc̆ek P., Císar̆ P., 2020. Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland waters. Ecological Indicators 113: 106236. DOI: https://doi.org/10.1016/j.ecolind.2020.106236

Sato T., Tsujimura M., Yamanaka T., Iwasaki H., Sugimoto A., Sugita M., Kimura F., Davaa G., Oyunbaatar D., 2007. Water sources in semiarid northeast Asia as revealed by field observations and isotope transport model. Journal of Geophysical Research: Atmospheres 1-13D17). DOI: https://doi.org/10.1029/2006JD008321

Şerban C., Maftei C., Dobrică G., 2022. Surface water change detection via water indices and predictive modeling using remote sensing imagery: A case study of Nuntasi-Tuzla Lake, Romania. Water 14(4): 556. DOI: https://doi.org/10.3390/w14040556

Seyoum W.M., Milewski A.M., Durham M.C., 2015. Understanding the relative impacts of natural processes and human activities on the hydrology of the Central Rift Valley lakes, East Africa. Hydrological Processes 29(19): 4312-4324. DOI: https://doi.org/10.1002/hyp.10490

Shang S., 2013. Lake surface area method to define minimum ecological lake level from level-area-storage curves. Journal of Arid Land 5: 133-142. DOI: https://doi.org/10.1007/s40333-013-0153-3

Sheffield J., Wood E.F., Pan M., Beck H., Coccia G., Serrat-Capdevila A., Verbist K.J.W.R.R., 2018. Satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions. Water Resources Research 54(12): 9724-9758. DOI: https://doi.org/10.1029/2017WR022437

Shen Y., Liu D., Jiang L., Nielsen K., Yin J., Liu J., Bauer-Gottwein P., 2022. High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010-2021. Earth System Science Data 14(12): 5671-5694. DOI: https://doi.org/10.5194/essd-14-5671-2022

Soille P., Pesaresi M., 2002. Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Transactions on Geoscience and Remote Sensing 40(9): 2042-2055. DOI: https://doi.org/10.1109/TGRS.2002.804618

Stringer L.C., Mirzabaev A., Benjaminsen T.A., Harris R.M., Jafari M., Lissner T.K., Stevens N., Tirado-von Der Pahlen C., 2021. Climate change impacts on water security in global drylands. One Earth 4(6): 851-864. DOI: https://doi.org/10.1016/j.oneear.2021.05.010

Sukhbaatar C., Sodnom T., Hauer C., 2020. Challenges for hydropeaking mitigation in an ice-covered river: A case study of the Eg hydropower plant, Mongolia. River Research and Applications 36(8): 1416-1429. DOI: https://doi.org/10.1002/rra.3661

Sumiya E., Dorjsuren B., Yan D., Dorligjav S., Wang H., Enkhbold A., Weng B., Qin T., Wang K., Gerelmaa T., Dambaravjaa O., 2020. Changes in water surface area of the lake in the Steppe Region of Mongolia: A case study of Ugii Nuur Lake, Central Mongolia. Water 12(5): 1470. DOI: https://doi.org/10.3390/w12051470

Tserensodnom J., 1971. Lakes of Mongolia. Mongolian Academy of Sciences, Institute of Geography and Permafrost, Ulaanbaatar, Mongolia: 56-60.

Tserensodnom J., 2000. Catalog of lakes of Mongolia. Mongolian Academy of Sciences, Institute of Geography, Ulaanbaatar, Mongolia: 45-84.

USGS [United States Geological Survey], 2023. USGS Global Visualization Viewer. Online: glovis.usgs.gov (accessed March 2023).

Valeyev A., Karatayev M., Abitbayeva A., Uxukbayeva S., Bektursynova A., Sharapkhanova Z., 2019. Monitoring coastline dynamics of Alakol Lake in Kazakhstan using remote sensing data. Geosciences 9(9): 404. DOI: https://doi.org/10.3390/geosciences9090404

Wang G., Zhang J., Li X., Bao Z., Liu Y., Liu C., He R., Luo J., 2017. Investigating causes of changes in runoff using hydrological simulation approach. Applied Water Science 7: 2245-2253. DOI: https://doi.org/10.1007/s13201-016-0396-1

Wang Y., Gu X., Yang G., Yao J., Liao N., 2021. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China. Journal of Arid Land 13(6): 581-598. DOI: https://doi.org/10.1007/s40333-021-0067-4

Wang Y.J., Qin D.H., 2017. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Advances in Climate Change Research 8(4): 268-278. DOI: https://doi.org/10.1016/j.accre.2017.08.004

Xu N., Ma Y., Wei Z., Huang C., Li G., Zheng H., Wang X.H., 2022. Satellite observed recent rising water levels of global lakes and reservoirs. Environmental Research Letters 17(7): 074013. DOI: https://doi.org/10.1088/1748-9326/ac78f8

Yembuu B., 2021. General Geographical Characteristics of Mongolia. In: Yembuu, B. (eds) The Physical Geography of Mongolia. Geography of the Physical Environment. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-61434-8

Yu Y., Chen X., Malik I., Wistuba M., Cao Y., Hou D., Ta Z., He J., Zhang L., Yu R., Zhang H., 2021. Spatiotemporal changes in water, land use, and ecosystem services in Central Asia considering climate changes and human activities. Journal of Arid Land 13: 881-890. DOI: https://doi.org/10.1007/s40333-021-0084-3

Yue H., Liu Y., 2019. Variations in the lake area, water level, and water volume of Hongjiannao Lake during 1986-2018 based on Landsat and ASTER GDEM data. Environmental Monitoring and Assessment 191: 1-25. DOI: https://doi.org/10.1007/s10661-019-7715-6

Zhang G., Bolch T., Chen W., Crétaux J.F., 2021. Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976-2019 and basin-wide glacier contribution. Science of the Total Environment 772: 145463. DOI: https://doi.org/10.1016/j.scitotenv.2021.145463

Zhang G., Yao T., Chen W., Zheng G., Shum C.K., Yang K., Piao S., Sheng Y., Yi S., Li J., O’Reilly C.M., 2019. Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes. Remote Sensing of Environment 221: 386-404. DOI: https://doi.org/10.1016/j.rse.2018.11.038