Abstract
The study describes the procedure and conditions for performing geovisualisations based on dispersed measurement data obtained at specified spatial intervals. The research utilised a rarely used method of representing dispersed phenomena in the form of static three-dimensional visualisation. The work presents the procedure necessary to create a clear and cartographically effective image of a phenomenon that is not directly observable but recorded using specialised equipment. The method was tested by analysing the spatial distribution and intensity of the signal strength of the Eduroam wireless access system operating in the building of the Faculty of Earth Sciences and Spatial Management at Nicolaus Copernicus University in Toruń. The outcome is a three-dimensional model of the signal distribution of this network within selected size intervals. The results support the building administrator’s decision-making processes regarding the optimal placement of internal access points. Geographic information system (GIS) software and raster applications for processing and integrating image data were used in the conducted activities. The methodological part describes data acquisition, geodatabase creation, statistical analysis, and data interpolation using spline functions and surface estimation. The development of 3D GIS tools not only enables more precise analyses but also contributes to a better understanding of the distribution of non-linearly dispersed phenomena in space. The presented method and the results of the conducted research contribute to the practical application development of 3D GIS systems.
References
Batty M., 2013. The new science of cities. MIT Press, Cambridge, MA. DOI: https://doi.org/10.7551/mitpress/9399.001.0001
Biljecki F., Ledoux H., Stoter J., 2016. Spatial data modelling for 3D GIS. ISPRS International Journal of Geo-Information 5(5): 92.
Candido G.C., Silva C.R.N., 2023. Performance evaluation of the Eduroam Wi-Fi network using a low-cost prototype. XLI Brazilian Symposium on Telecommunications and Signal Processing: 8-11.
ESRI Inc., 2024. Collector for ArcGIS. Online: doc.arcgis.com/pl/collector-classic/ (accessed on January 3, 2024).
ESRI, 2024a. ArcGIS Pro: Overview. Online: www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on January 8, 2024).
ESRI, 2024b. 3D GIS | ArcGIS 3D mapping software. Online: www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on January 12, 2024).
Fischer M.M., Getis A. (eds), 2008. Handbook of applied spatial analysis: Software tools, methods and applications. Springer, Berlin.
Florio L., Wierenga K., 2005. Eduroam: Past, present and future. Computational Methods in Science and Technology 11(2): 169-173. DOI: https://doi.org/10.12921/cmst.2005.11.02.169-173
Gao S., Hu Y., Li W., Zou L., 2023. Special issue on geospatial artificial intelligence. GeoInformatica 27: 133-136. DOI: https://doi.org/10.1007/s10707-023-00493-6
Górniak G., Kunz M., 2024. Technologia 3D GIS – w kierunku wykorzystania w analizach i wizualizacji zjawisk przyrodniczych. In: Środowisko przyrodnicze jako obszar badań, Vol. VI, Chapter 15, Bogucki Wydawnictwo Naukowe, Poznań. DOI: https://doi.org/10.12657/9788379865123-15
Haeberling C., 2008. Cartographic design principles for 3D maps. Cartographica: The International Journal for Geographic Information and Geovisualization 43(3): 175-188. DOI: https://doi.org/10.3138/carto.43.3.175
Hamza M.H., Chmit M., 2022. GIS-based planning and Web/3D Web GIS applications for the analysis and management of MV/LV electrical networks (A Case Study in Tunisia). Applied Sciences 12: 2554. DOI: https://doi.org/10.3390/app12052554
Karpińska D., Kunz M., 2021. The analysis of the visibility and signal strength of the LoRaWAN network in an urbanized area: A case study of the Bielany campus at the Nicolaus Copernicus University in Toruń. Bulletin of Geography Socio-Economic Series 54: 137-149. DOI: https://doi.org/10.2478/bog-2021-0039
Karpińska D., Kunz M., 2023. Vertical variability of night sky brightness in urbanised areas. Quaestiones Geographicae 42(1): 5-14. DOI: https://doi.org/10.14746/quageo-2023-0001
Kolbe T.H., Donaubauer A., Beil C., (eds), 2024. Recent advances in 3D geoinformation science. Proceedings of the 18th 3D Geoinfo Conference. Munich. Springer. DOI: https://doi.org/10.1007/978-3-031-43699-4
Kraak M.J., Ormeling F., 2010. Cartography: Visualization of spatial data. Guilford Press, 2011 – 199
Li W., Wang M., Song X., 2015. Voxel-based modeling and analysis of 3D spatial data. International Journal of Geographical Information Science 29(8): 1370-1390.
Li Z., Zhu Q., Gold C., 2016. Digital terrain modeling: Principles and methodology. CRC Press.
Mair D., Renzler M., Kovar S., Martinek T., Kadavy T., Bergmuller S., Horn A., Braun J., Kaserer L., 2023. Evolutionary optimized 3D Wi-Fi antennas manufactured via laser powder bed fusion. IEEE Access 11: 121914-121923. DOI: https://doi.org/10.1109/ACCESS.2023.3328852
Nourian P., Gonçalves R., Zlatanova S., Ohori K.A., Vu Vo A., 2016. Voxelization algorithms for geospatial applications: Computational methods for voxelating spatial datasets of 3D city models containing 3D surface, curve and point data models. MethodsX 3: 69-86. DOI: https://doi.org/10.1016/j.mex.2016.01.001
Nowacki Ł, Rychel J., Kamiński M., 2022. Wizualizacja Przestrzeni. Academia 4(72): 34-38. DOI: https://doi.org/10.24425/academiaPAN.2022.143972
Rahman A., Pilouk M., 2008. Spatial data modelling for 3D GIS. Springer.
Smith T.F., Jones C., 2004. Spline interpolation in spatial data analysis. Journal of Computational and Graphical Statistics 13(3): 579-593.
Turner A.K., Karp T., Shumaker G.B., 2016. 3D model integration for analysis and visualization in the earth sciences. Geological Society of America, Boulder, CO.
Wegmann M., Schwalb-Willmann J., Dech S., 2020. Introduction to spatial data analysis: Remote sensing and GIS with open source software. Pelagic Publishing Ltd. DOI: https://doi.org/10.53061/HCED6492
Wolniewicz T., Górecka-Wolniewicz M., Ołtuszyk Z., 2012. Koncepcja wdrożenia usługi Eduroam w sieci PIONIER. Projekt PLATON. Poznań: Instytut Chemii Bioorganicznej PAN, maszynopis, 7 stron.
Zboralski D., Kunz M., 2024. Mobile systems for assessing air quality: Available solutions and application examples. Bulletin of Geography Physical Geography Series 27: 5-26. DOI: https://doi.org/10.12775/bgeo-2024-0007
Zhang L., Wang H., Wang H., 2019. 3D-Wi-Fi: 3D localization with commodity Wi-Fi. IEEE Sensors Journal 19-13. DOI: https://doi.org/10.1109/JSEN.2019.2900511
Zlatanova S., Ghadikolaee N., 2015. Voxel GIS: Challenges and opportunities. Delft University of Technology, Delft.
License
Copyright (c) 2025 Grzegorz Górniak, Mieczysław Kunz

This work is licensed under a Creative Commons Attribution 4.0 International License.
