Abstract
Since the late 1980s, air temperature in Kraków (southern Poland) has increased by ~2.2–2.3°C compared to the 1951–1988 average. Over the same period, a significant increase in sunshine duration (SD) (by about 500 hr) has been observed relative to the 1951–1988 baseline. This pattern of temperature change in Kraków is representative of trends observed across Poland. The aim of this study is to determine the impact of SD on the increase in air temperature in Kraków. The analysis indicates that the strong rise in SD has resulted from changes in cloud structure since the late 1980s. During this period, the frequency of frontal stratiform clouds (As, Ns, St) decreased, while the occurrence of Sc, Cu, and Cb clouds increased. These shifts in cloud structure, driven by changes in mid-tropospheric macro-circulation, have led to an increase in SD. An analysis of the combined influence of three factors – annual SD, the NAO PC DJFM index (Hurrell), and radiative forcing (∆F) – on annual temperature trends between 1951 and 2020 shows that the variability of these factors explains 67.3% of the variance in annual air temperature (R = 0.83, p << 0.001), fully accounting for the observed temperature increase within the margin of estimation error. Of this, SD variability explains 58% of the variance, NAO index variability accounts for 7.7%, and ∆F variability contributes 3.6%. These findings indicate that the primary driver of air temperature increase in Kraków is the rise in SD (solar radiation influx) rather than radiative forcing (∆F).
References
Bartoszek K., Matuszko D., 2021. The influence of atmospheric circulation over Central Europe on the long-term variability of sunshine duration and air temperature in Poland. Atmospheric Research 251: 105427.
Bokwa A., 2009. Miejska wyspa ciepła na tle naturalnego zróżnicowania termicznego obszaru położonego we wklęsłej formie terenu (na przykładzie Krakowa). Prace Geograficzne 122: 111-122.
Bokwa A., 2010. Wieloletnie zmiany struktury mezoklimatu miasta na przykładzie Krakowa. IGiGP Uniwersytet Jagielloński, Kraków.
Brázdil R., Flocas A., Sahsamanoglou H., 1994. Fluctuation of sunshine duration in central and South-Eastern Europe. International Journal of Climatology 14(9): 1017-1034.
Dübal H.-R., Vahrenholt F., 2021. Radiative energy flux variation from 2001-2020. Atmosphere 12(1297): 1-20.
Filipiak J., 2021. Change of cloudiness. In: Falarz M. (ed.), Climate change in Poland. Springer, Cham, Switzerland: 217-274.
Girs A.A., 1964. O sozdanii edinoi klassifikacii makrosinopticheskikh processov severnogo polushariya. Meteorologya i Gidrologiya 4: 43-47.
Hurrell J.W., Kushnir Y., Ottersen G., Visbeck M., 2003. An overview of the North Atlantic oscillation. In: The North Atlantic oscillation: Climatic Significance and environmental impact. Geophysical Monograph: 134. American Geophysical Union, Washington, DC: 1-35. Online: https://agupubs.onlinelibrary.wiley.com/doi/book/10.1029/GM134 (accessed 12 September 2024).
IPCC Reports. 2007. Technical summary. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (eds), Climate change 2007: The physical science basic. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, New York, USA. Online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-frontmatter-1.pdf (accessed 12 September 2024).
IPCC Reports. 2013. Summary for policymakers. In: Stocker T.F., Qin D., Plattner G.K., Tignor M., Allen S.K., Boschung J., Naules A., Xia Y., Bex V., Midgley P.M. (eds), Climate change 2013. The physical science basis. Contribution of working group I to fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, New York, USA. Online: https://www.ipcc.ch/report/ar5/wg1/ (accessed 12 September 2024).
IPCC Reports. 2023. Climate change 2023: Synthesis report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Lee H., Romero J. (eds.)]. IPCC, Geneva, Switzerland: 35-115. Online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf (accessed 12 September 2024).
IPCC. 2001. Radiative forcing of climate change. In: TAR climate change 2001: The scientific basis. Chap. Charter 6. Cambridge University Press: 35-414, Cambridge, UK, New York, USA.
Lewik P., Matuszko D., Morawska-Horawska M., 2010. Multi-annual variability of cloudiness and sunshine duration in Cracow between 1826 and 2005. In: Przybylak R. (ed.), The Polish climate in the European context: An historical overview. Springer, Dordrecht: 341-353.
Lewińska J., 2000. Klimat miasta: zasoby, zagrożenia, kształtowanie. IGPiK, Kraków: 1-151.
Marsz A., Styszyńska A., 2021. Zmiany usłonecznienia rzeczywistego w Polsce i ich przyczyny (1966-2018). Prace Geograficzne 165: 23-52.
Marsz A.A., Matuszko D., Styszyńska A., 2024. Multiyear variability of cloud genera in Krakow in the context of changes in the thermal state of the North Atlantic. International Journal of Climatology 44: 1154-1170.
Marsz A.A., Styszyńska A., 2022. Proces ocieplenia w Polsce – przebieg i przyczyny (1951-2018). Przejaw wewnętrznej dynamiki systemu klimatycznego czy proces antropogeniczny? Prace i Studia Geograficzne. Uniwersytet Warszawski 67: 51-82.
Marsz A.A., Styszyńska A., 2023. Zmiany ciśnienia atmosferycznego nad Morzem Barentsa i ich wpływ na cyrkulację atmosferyczną w atlantycko-europejskim sektorze cyrkulacyjnym. Przegląd Geofizyczny 68(3-4): 83-111
Marsz A.A., Styszyńska A., 2024a. Atlantyk Północny a klimat Europy. Mechanizmy wpływu. Część 1. Prace i Studia Geograficzne 69: 25-43.
Marsz A.A., Styszyńska A., 2024b. Atlantyk Północny a klimat Europy. Mechanizmy wpływu. Część 2. Prace i Studia Geograficzne 69: 7-28.
Marsz A.A., Styszyńska A., Bryś K., Bryś T., 2021. Role of internal variability of climate system in increase of air temperature in Wrocław (Poland) in the years 1951-2018. Quaestiones Geographicae 40(3): 109-124.
Matuszko A., Mikołajczyk D., Matuszko D., 2023. Zmiany klimatu Krakowa i adaptacja do nich w kontekście uwarunkowań planistycznych. Prace Geograficzne 170: 99-118.
Matuszko D., 2007. Zmienność zachmurzenia na podstawie krakowskiej serii obserwacyjnej (1863-2005). In: Piotrowicz K., Twardosz R. (eds), Wahania klimatu w różnych skalach przestrzennych i czasowych. IGiGP UJ, Kraków: 347-354. (in Polish).
Matuszko D., 2012a. Influence of the extent and genera of cloud cover on solar radiation intensity. International Journal of Climatology 32: 2403-2414.
Matuszko D., 2012b. Influence of cloudiness on sunshine duration. International Journal of Climatology 32: 1527-1536.
Matuszko D., 2014. Long-term variability in solar radiation in Krakow based on measurements of sunshine duration. International Journal of Climatology 34: 228-234.
Matuszko D., 2015. A comparison of sunshine duration records from the Campbell-Stokes sunshine recorder and CSD3 sunshine duration sensor. Theoretical Applied of Climatology 419: 401-406.
Matuszko D., Bartoszek K., Soroka J., 2022a. Relationships between sunshine duration and air temperature in Poland. Geographia Polonica 95: 275-290.
Matuszko D., Bartoszek K., Soroka J., 2022b. Long-term variability of cloud cover in Poland (1971-2020). Atmospheric Research 268: 1-13.
Matuszko D., Bartoszek K., Soroka J., Węglarczyk S., 2020. Sunshine duration in Poland from ground- and satellite-based data. International Journal of Climatology 40(9): 4259-4271.
Matuszko D., Węglarczyk S., 2014. Effect of cloudiness on long-term variability in air temperature in Krakow. International Journal of Climatology 34: 145-154.
Matuszko D., Węglarczyk S., 2015. Relationship between sunshine duration and air temperature and contemporary global Warming. International Journal of Climatology 35: 3640-3653.
Matuszko D., Węglarczyk S., 2018. Long-term variability of the cloud amount and cloud genera and their relationship with circulation (Kraków, Poland). International Journal of Climatology 38(51): 1205-1220.
Morawska-Horawska M., 1991. Wpływ rozwoju miast i globalnego ocieplenia na wzrost temperatury powietrza w Krakowie w 100-leciu 1881-1980. Przegląd Geofizyczny 36(4): 321-327.
Niedźwiedź T., 1981. Sytuacje synoptyczne i ich wpływ na zróżnicowanie przestrzenne wybranych elementów klimatu w dorzeczu górnej Wisły. Rozprawy Habilitacyjne UJ 58:107-125.
Norris J.R., Slingo A., 2009. Trends in observed cloudiness and Earth’s radiation budget. In: Heintzenberg J., Charlson R.J. (eds), Clouds in the perturbed climate system. MIT Press, Cambridge, MA: 17-36.
Pfeifroth U., Bojanowski J.S., Clerbaux N., Manara V., Sanchez-Lorenzo A., Trentmann J., Walawender J.P., Hollmann R., 2018. Satellite-based trends of solar radiation and cloud parameters in Europe. Advances in Science and Research 15: 31-37.
Post P., Aun M., 2024. Changes in cloudiness contribute to changing seasonality in the Baltic Sea region. Oceanologia 66(1): 91-98.
Savichev A.I., Mironicheva N.P., Cepelev V.Y., 2015. Osobennosti kolebanij atmosfernoj cirkulyacii v Atlantiko-evropejskom sektore polushariya v poslednie desyatiletiya. Uchenye zapiski Rossijskogo gosudarstvennogo gidrometeorologicheskogo universiteta 39: 120-131.
Sfîcă L., Beck C., Nita A.I., Voiculescu M., Birsan M.-V., Philipp A., 2021. Cloud cover changes driven by atmospheric circulation in Europe during the last decades. International Journal of Climatology 41: E2211-E2230.
Ustrnul Z., Wypych A., Czekierda D., 2021. Air temperature change. In: Falarz M. (ed.), Climate change in Poland. Springer, Cham, Switzerland: 275-330.
van Wijngaarden W.A., Happer W., 2025. Radiation transport in clouds. Klimarealistene (The Science of Climate Change), Vol. 5.1: 1-12. Online: https://scienceofclimatechange.org/wp-content/uploads/SCC-2025-vWijngaarden-Happer.pdf.
Veretenenko S., Ogurtsov M., 2016. Cloud cover anomalies at middle latitudes: Links to troposphere dynamics and solar variability. Journal of Atmospheric and Solar-Terrestrial Physics 149: 207-218.
Wangengejm G.Y., 1952. Osnovy makrocirkuylacionngo metoda dolgosrochnykh meteorologicheskikh prognozov dlya Arktiki. Trudy AANII 34: 1-314.
Wibig J., 2008. Variability and trends in cloud characteristics in Lodz in the second half of the 20th century. International Journal of Climatology 28(4): 479-491.
License
Copyright (c) 2025 Andrzej A. Marsz, Dorota Matuszko, Anna Styszyńska

This work is licensed under a Creative Commons Attribution 4.0 International License.
