Abstract
The Cenozoic basalts of the Khorat Plateau are prevalent in Thailand’s lower northeastern region. Despite their abundance, detailed studies on the composition and morphology of these basalts are scarce. This research examines the relationship between volcanic morphology and geochemistry in northeastern Thailand, focussing on basalts from Buriram, Surin and Sisaket Provinces. Using polarised microscopes and X-ray fluorescence (XRF) analysis, this study investigates the petrography and geochemistry of these basalts. Field observations reveal eruptions from both shield volcanoes and fissures, with notable shield volcanoes including Khao Phanom Sawai, Khao Phra Angkhan, Khao Phanom Rung, Khao Kradong, Khao Plai Bat and Phu Fai. Petrographic analysis identifies these basalts as olivine basalt with porphyritic textures and occasional trachytic textures. Geochemical classification includes trachybasalt, basalt, basaltic andesite, basaltic trachyandesite and andesite, with SiO2 contents ranging from 51.07% to 61.46%. Trace element analysis categorises them as alkaline basalt. Although shield volcanoes show higher SiO2 concentrations compared to lava flows, morphological differences do not consistently align with SiO2 trends, suggesting that magma viscosity and eruption patterns are influenced by additional geochemical factors. This study also highlights the importance of engaging local communities to enhance understanding of volcanism’s historical and cultural impacts.
References
Abidin H.Z., Andreas H., Gamal M., Hendrasto M., Suganda O.K., Purbawinata M.A., Meilano I., Kimata F., 2004. The deformation of Bromo Volcano (Indonesia) as detected by GPS surveys method. Journal of Global Positioning Systems 3(1-2): 16-24. DOI: https://doi.org/10.5081/jgps.3.1.16
Barr S.M., James D.E., 1990. Trace element characteristics of Upper Cenozoic basaltic rocks of Thailand, Kampuchea and Vietnam. Journal of Asian Earth Sciences 4: 233-242. DOI: https://doi.org/10.1016/S0743-9547(05)80016-9
Barr S.M., Macdonald A.S., 1981. Geochemistry and geochronology of late Cenozoic basalts of Southeast Asia. Geological Society of America Bulletin 92: 1069-1142. DOI: https://doi.org/10.1130/GSAB-P2-92-1069
Bitschene P.R., 2015. Edutainment with basalt and volcanoes - The Rockeskyller Kopf example in the Westeifel volcanic field/Vulkaneifel European Geopark, Germany. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 166(2): 187-193. DOI: https://doi.org/10.1127/zdgg/2015/0029
Bitschene P., Schueller A., 2011. Geo-education and geopark implementation in the Vulkaneifel European Geopark. GSA Field Guide 22: 29-34. DOI: https://doi.org/10.1130/2011.0022(03)
Boonsoong A., Panjasawatwong Y., Metparsopsan K., 2011. Petrochemistry and tectonic setting of mafic volcanic rocks in the Chon Daen-Wang Pong area, Phetchabun, Thailand. Island Arc 20: 107-124. DOI: https://doi.org/10.1111/j.1440-1738.2010.00748.x
Brilha J., 2018. Geoheritage: Inventories and evaluation. In J. Reynard, & E. Brilha (Eds.), Geoheritage: Assessment, protection, and management (pp. 69-85). Amsterdam: Elsevier. DOI: https://doi.org/10.1016/B978-0-12-809531-7.00004-6
Carr B.B., Clarke A.B., Vanderkluysen L., 2016. Mechanisms of lava flow emplacement during an effusive eruption of Sinabung Volcano (Sumatra, Indonesia). Journal of Volcanology and Geothermal Research 311: 60-71. DOI: https://doi.org/10.1016/j.jvolgeores.2015.12.004
Charusiri P., 1989. Lithophile metallogenic epochs of Thailand: Geological and geochronological syntheses. PhD Thesis Queen’s University, Kingston, 819.
Charusiri P., Sutthirat C., Plathong C., Pongsapich W., 2004. Geology and petrochemistry of basaltic rocks of Khao Dradong, Burirum, NE Thailand: Implications for rock wool; potentials and tectonic setting. Journal of Scientific Research, Chulalongkorn University 29: 81-103.
Cronin S.J., Stewart C., Zernack A.V., Brenna M., Procter J.N., Pardo N., Christenson B., Wilson T., Stewart R.B., Irwin M., 2014. Volcanic ash leachate compositions and assessment of health and agricultural hazards from 2012 hydrothermal eruptions, Tongariro, New Zealand. Journal of Volcanology and Geothermal Research 286: 233-247. DOI: https://doi.org/10.1016/j.jvolgeores.2014.07.002
Csillag G., Korbely B., Németh K., 2004. Volcanological sites of Balaton uplands National Park as key points for a proposed geopark in western Hungary. Occasional Papers of the Geological Institute of Hungary 203: 49.
DMR, 2013. Geologic map of Thailand. Department of Mineral Resources, Bangkok.
Fearnley C.J., Bird D.K., Haynes K., McGuire W., Jolly G., 2018. Observing the volcano world. Springer, Berlin: 771. DOI: https://doi.org/10.1007/978-3-319-44097-2
Fearnley C., McGuire W., Davies G., Twigg J., 2012. Standardisation of the USGS volcano alert level system (VALS): Analysis and ramifications. Bulletin of Volcanology 74: 2023-2036. DOI: https://doi.org/10.1007/s00445-012-0645-6
Fearnley C., Winson A.E.G., Pallister J., Tilling R.I., 2017. Volcano crisis communication: challenges and solutions in the 21st century. Springer, Berlin: 3-21. DOI: https://doi.org/10.1007/11157_2017_28
García-Cortés A., Vegas J, Carcavilla L., Díaz-Martínez E., 2018. Conceptual base and methodology of the Spanish Inventory of Sites of Geological Interest (IELIG). Retrieved from https://web.igme.es/patrimonio/descargas/CONCEPTUAL%20BASE%20AND%20METHODOLOGY%20OF%20THE%20SPANISH%20INVENTORY%20OF%20SITES%20OF%20GEOLOGICAL%20INTEREST%20(IELIG).pdf.
Intasopa S., 1993. Petrology and geochronology of the volcanic rocks of the central Thailand volcanic belt. PhD Thesis University of New Brunswick, New Brunswick, 242.
Intasopa S., Dunn T., Lambert R.S.J., 1995. Geochemistry of Cenozoic basaltic and silicic magmas in the central portion of the Loei-Phetchabun volcanic belt, Lop Buri, Thailand. Canadian Journal of Earth Sciences 32: 393-409. DOI: https://doi.org/10.1139/e95-034
Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27: 745-750. DOI: https://doi.org/10.1093/petrology/27.3.745
Mejía-Agüero O., Quesada-Román A., 2024. Geoheritage assessment for the geoconservation and geotourism promotion of in the Altamira sector of the La Amistad International Park, Costa Rica. Geoheritage 16: 95. DOI: https://doi.org/10.1007/s12371-024-01015-y
Németh K., Casadevall T., Moufti M.R., Marti J., 2017a. Volcanic geoheritage. Geoheritage 9(3): 251-254. DOI: https://doi.org/10.1007/s12371-017-0257-9
Németh K., Moufti M.R.H., 2024. Geoheritage as an engine for development on resilient volcanic hazard programs: the geoeducation opportunity. In: Geoheritage and geodiversity of Cenozoic volcanic fields in Saudi Arabia. Geoheritage, geoparks and geotourism. Eds. Németh K., Moufti M.R.H., Springer, Cham, 165-179. DOI: https://doi.org/10.1007/978-3-031-61217-6_6
Németh K., Wu J., Sun C., Liu J., 2017b. Update on the volcanic geoheritage values of the Pliocene to Quaternary Arxan-Chaihe volcanic field, Inner Mongolia, China. Geoheritage 9: 279-297. DOI: https://doi.org/10.1007/s12371-017-0224-5
Pearce J.A., Cann J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19: 290-300. DOI: https://doi.org/10.1016/0012-821X(73)90129-5
Pérez-Umaña D., Quesada-Román A., Tefogoum G.Z., 2020. Geomorphological heritage inventory of Irazú volcano, Costa Rica. International Journal of Geoheritage and Parks 8(1): 31-47. DOI: https://doi.org/10.1016/j.ijgeop.2019.12.001
Quesada-Román A., Pérez-Umaña D., 2020. Tropical paleoglacial geoheritage inventory for geotourism management of Chirripó National Park, Costa Rica. Geoheritage 12: 58. DOI: https://doi.org/10.1007/s12371-020-00485-0
Quesada-Román A., Torres-Bernhard L., Ruiz-Álvarez M.A., Rodríguez-Maradiaga M., Velázquez-Espinoza G., Espinosa-Vega C., Toral J., Rodríguez-Bolaños H., 2022. Geodiversity, geoconservation, and geotourism in Central America. Land 11(1): 48. DOI: https://doi.org/10.3390/land11010048
Quesada-Román A., Zangmo G.T., Pérez-Umaña D., 2020. Geomorphosite comparative analysis in Costa Rica and Cameroon Volcanoes. Geoheritage 12: 90. DOI: https://doi.org/10.1007/s12371-020-00515-x
Quesada-Valverde M.E., Quesada-Román A., 2023. Worldwide trends in methods and resources promoting geoconservation, geotourism, and geoheritage. Geosciences 13: 39. DOI: https://doi.org/10.3390/geosciences13020039
Quesada-Valverde M., Quesada-Román A., 2025. Inventory and assessment of geosites to promote geotourism in Coto Brus, Costa Rica. Geomorphology 470: 109531. DOI: https://doi.org/10.1016/j.geomorph.2024.109531
Singtuen V., Anumart A., 2022. Characterisation and evaluation of columnar basalt geoheriatge in Thailand: Implication for geotourism management in post-quarrying area. Quaestiones Geographicae 41(1): 37-50. DOI: https://doi.org/10.2478/quageo-2022-0003
Singtuen V., Phajan S., 2021. Petrographic and geochemical data of high alkaline basalts, Sisaket Terrain, NE Thailand. Data in Brief 39: 107540. DOI: https://doi.org/10.1016/j.dib.2021.107540
Singtuen V., Phajan S., Anumart A., Phajuy B., Srijanta K., Promkotra S., 2021. Alteration of high alkaline and alkaline basaltic rocks: Parent rocks in the Lava Durian orchard, Sisaket Province, NE Thailand. Heliyon 7(12): e08619. DOI: https://doi.org/10.1016/j.heliyon.2021.e08619
Sutthirat C., Charusiri P., Farrar E., Clark A.H., 1994. New 40Ar/39Ar geochronology and characteristics of some Cenozoic basalts in Thailand. International Symposium on Stratigraphic Correlation of Southeast Asia, Bangkok: 306-321.
Szepesi J., Harangi S., Ésik Z., Novák T.J., 2017. Volcanic geoheritage and geotourism perspectives in Hungary: A case of a UNESCO World Heritage Site, Tokaj Wine Region Historic Cultural Landscape, Hungary. Geoheritage 9: 329-349. DOI: https://doi.org/10.1007/s12371-016-0205-0
Tefogoum G.Z., Román A.Q., Umaña D.P., 2020. Geomorphosites inventory in the Eboga Volcano (Cameroon): Contribution for geotourism promotion. Géomorphologie: Relief, Processus, Environnement 26(1): 19-33. DOI: https://doi.org/10.4000/geomorphologie.14006
Winchester J.A., Floyd P.A., 1997. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20: 325-343. DOI: https://doi.org/10.1016/0009-2541(77)90057-2
Yang T., Liu F., Harmon N., Le K.P., Gu S., Xue M., 2015. Lithospheric structure beneath Indochina block from Rayleigh wave phase velocity tomography. Geophysical Journal International 200(3): 1582-1595. DOI: https://doi.org/10.1093/gji/ggu488
Yan Q., Shi X., Metcalfe I., Liu S., Xu T., Kornkanitnan N., Sirichaiseth T., Yuan L., Zhang Y., Zhang H., 2018. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia. Scientific Reports 8(1): 2640. DOI: https://doi.org/10.1038/s41598-018-20712-7
License
Copyright (c) 2025 Vimoltip Singtuen, Supakit Srisaphon

This work is licensed under a Creative Commons Attribution 4.0 International License.
