Abstract
The relationship between surface water (SW) and groundwater (GW) is most evident in river valleys, where GW typically lies at shallow depths beneath the surface. The nature of this relationship can change dynamically over time, depending on various factors such as water levels, landform features, meteorological and hydrogeological conditions and the initial retention capacity of the catchment area. Additionally, in meandering rivers, GW may flow through the alluvium of the meander along the river channel within a hyporheic corridor, following the hydraulic gradient and thus shortening the flow path. This study presents the results of observations of river and GW levels conducted at the hydrological station of Adam Mickiewicz University (AMU), located in the Warta Valley in Poznań. The main objective was to determine the position of the GW table relative to the river water level and to analyse the variability of GW flow in the study area. The findings confirmed the functioning of the hyporheic corridor in the studied meander of the Warta River.
References
Alley W.M., Healy R.W., LaBaugh J.W., Reilly T.W., 2002. Flow and storage in groundwater systems. Science 296(5575): 1985-1990. DOI: https://doi.org/10.1126/science.1067123
Bajkiewicz-Grabowska E., 2020. Hydrologia ogólna (Basic Hydrology). Wyd. PWN, Warszawa.
Boulton A., Findlay S., Marmonier P., Stanley E., Vallet M., 1998. Thefunctional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59-81. DOI: https://doi.org/10.1146/annurev.ecolsys.29.1.59
Cardenas M.B., 2009. A model for lateral hyporheic flow based on valley slope and channel sinuosity. Water Resources Research 45: W01501. DOI: https://doi.org/10.1029/2008WR007442
Choiński A. (red.), 2019. Wody Wielkopolski (Waters of the Wielkopolska Region). Wyd. Uniwersytet im. A. Mickiewicza w Poznaniu, Poznań.
Dahl M., Nilsson B., Langhoff J.L., Refsgaard J.C., 2007. Review of classification systems and new multi-scale typology of groundwater-surface water interaction. Journal of Hydrology 344: 1-16. DOI: https://doi.org/10.1016/j.jhydrol.2007.06.027
Dowgiałło J., Kleczkowski A.S., Macioszczyk T., Różkowski A., 2002. Słownik hydrogeologiczny (Hydrogeological Dictionary). Wyd. Państwowy Instytut Geologiczny – PIB, Warszawa.
Harvey J., Gooseff M., 2015. River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resources Research 51: 6893-6922. DOI: https://doi.org/10.1002/2015WR017617
Jekatierynczuk-Rudczyk E., Puczko K., Żukowska J., Sawicka A. (red.), 2021. Biota communities influence on nutrients circulation in hyporheic zone – A case study in urban spring niches in Bialystok (NE Poland). Aquatic Sciences 83: 75. DOI: https://doi.org/10.1007/s00027-021-00831-6
Kowalski J., 1998. Hydrogeologia z podstawami geologii (Hydrogeology and the Basics of Geology). Wyd. AR we Wrocławiu, Wrocław.
Krause S., Hannah D., Fleckenstein J.H., Heppell C.M., Kaeser D., Pickup R., Pinay G., Robertson A.L., Wood P.J., 2011. Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology 4(4): 481-499. DOI: https://doi.org/10.1002/eco.176
Lerner D.N., Smith J., Hannah D., Krause S., Lawler D., Pickup R., 2009. The hyporheic handbook: A handbook on the groundwater-surface water interface and hyporheic zone for environment managers. Integrated catchment science programme. Science report UK Environment Agency, No. SC050070. Environment Agency.
Lewandowski J., Arnon S., Banks E., Batelaan O., Betterle A., Broecker T., Coll C., Drummond J.D., Gaona Garcia J., Galloway J., Gomez-Velez J., Grabowski R.C., Herzog S.P., Hinkelmann R., Höhne A., Hollender J., Horn M.A., Jaeger A., Krause S., Löchner Prats A., Magliozzi C., Meinikmann K., Mojarrad B.B., Mueller B.M., Peralta-Maraver I., Popp A.L., Posselt M., Putschew A., Radke M., Raza M., Riml J., Robertson A., Rutere C., Schaper J.L., Schirmer M., Schulz H., Shanafield M., Singh T., Ward A.S., Wolke P., Wörman A., Wu L., 2019. Is the hyporheic zone relevant beyond the scientific community? Water 11(11): 2230. DOI: https://doi.org/10.3390/w11112230
Marciniak M., 1999. Identyfikacja parametrów hydrogeologicznych na podstawie skokowej zmiany potencjału hydraulicznego. Metoda PARAMEX. (Identification of hydrogeological parameters based on a rapid change in hydraulic potential. The PARAMEX method). Wyd. Nauk. UAM, Poznań.
Marciniak M., Ziułkiewicz M., Górecki M., 2022. Variability of water exchange in the hyporheic zone of a lowland riverin Poland based on gradientometric studies. Quaestiones Geographicae 41(3): 141-156. DOI: https://doi.org/10.2478/quageo-2022-0030
Naegeli M.W., Uehlinger U., 1997. Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed-river. Journal of the North American Benthological Society 16: 794-804. DOI: https://doi.org/10.2307/1468172
Obidziński A. (ed.), 2018. Inwentaryzacja i waloryzacja przyrodnicza. Metody naziemne i geomatyczne (Inventory and natural valorization. Ground-based and geomatic methods). Wydawnictwo SGGW, Warszawa.
Okońska M., Brzezińska W., 2024. Obserwacje wód powierzchniowych i podziemnych na posterunku hydrologicznym w dolinie Warty w Poznaniu (Observations of Surface Water and Groundwater at the Hydrological Station in the Warta Valley in Poznań). In: Wrzesiński D., Graf R., Brzezińska W. (eds), Naturalne i antropogeniczne zmiany obiegu wody. Uwarunkowania środowiskowe. Studia i Prace z Geografii 99. Bogucki Wydawnictwo Naukowe, Poznań: 57-72. DOI: https://doi.org/10.12657/978-83-7986-532-1-4
Orghidan T., 1959. Ein neuer Lebensraume des unterirdischen Wassers: Der hyporheische Biotop. Archive für Hydrobiologie 55: 392-414.
Pacioglu O., 2010. Ecology of the hyporheic zone: a review. Cave and Karst Science 36(3): 69-76.
Richling A., Solon J., Macias A., Balon J., Borzyszkowski J., Kistowski M., 2021. Regionalna geografia fizyczna Polski (Regional Physical Geography of Poland). Bogucki Wydawnictwo Naukowe, Poznań.
Smith J.W.N., 2005. Groundwater – surface water interactions in the hyporheic zone. Environment Agency Science report SC030155/1. Environment Agency, Bristol, UK.
Smith J.W.N., Bonell M., Gibert J., McDowell W.H., Sudicky E.A., Turner J.V., Harris R.C., 2008. Groundwater – Surface water interactions, nutrient fluxes and ecological response in river corridors: Translating science into effective environmental management. Hydrological Processes 22: 151-157. DOI: https://doi.org/10.1002/hyp.6902
Stanford J., Ward J.V., 1993. An ecosystem perspective of alluvial rivers: Connectivity and the Hyporheic Corridor. Journal of the North American Benthological Society 12: 48-60. DOI: https://doi.org/10.2307/1467685
Staśko S., Olichwer T., 2005. Wody podziemne w dolinach rzecznych i ich znaczenie w systemie wodnym (Groundwater in river valleys and its importance in the water system). In: Tomialojć L., Drabiński A. (eds), Środowiskowe aspekty gospodarki wodnej. Komitet Ochrony Przyrody PAN, Wydział Inżynierii Kształtowania Środowiska i Geodezji AR we Wrocławiu, Wrocław: 179-189.
Stegen J.C., Johnson T., Fredrickson J.K., Wilkins M.J., Konopka A.E., Nelson W.C., Arntzen E.V., Chrisler W.B., Chu R.K., Fansler S.J., Graham E.B., Kennedy D.W., Resch C.T., Tfaily M., Zachara J., 2018. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Nature Communications 9: 585. DOI: https://doi.org/10.1038/s41467-018-02922-9
Van Loon A.F., 2015. Hydrological drought explained. Wiley Interdisciplinary Reviews Water 2(4): 359-392. DOI: https://doi.org/10.1002/wat2.1085
Wen Z., Liu H., Rezanezhad F., Krause S., 2024. Advancement and perspectives of hyporheic zone hydrology: Technology, theory and environmental implication. Journal of Hydrology 630: 130721. DOI: https://doi.org/10.1016/j.jhydrol.2024.130721
Williams G.P., 1986. River meanders and channel size. Journal of Hydrology 88(1-2): 147-164. DOI: https://doi.org/10.1016/0022-1694(86)90202-7
Winter T.C., Harvey J.W., Franke O.L., Alley W.M., 1998. Ground water and surface water. A single resource. US Geological Survey Circular 1139, Denver, CO, USA. DOI: https://doi.org/10.3133/cir1139
Wrzesiński D., Perz A., 2016. Cechy reżimu odpływu rzek w zlewni Warty (Characteristics of the river discharge regime in the Warta River Basin). Badania Fizjograficzne nad Polską Zachodnią Seria A – Geografia Fizyczna 67: 289-304.
Wu L., Gomez-Velez J.D., Li L., Carroll K.C., 2024. The fragility of bedform-induced hyporheic zones: Exploring impacts of dynamic groundwater table fluctuations. Water Resources Research 60: e2023WR036706. DOI: https://doi.org/10.1029/2023WR036706
PN-EN ISO 14688-2:2018-05P Rozpoznanie i badania geotechniczne—Oznaczanie i klasyfikowanie gruntów—Część 2: Zasady klasyfikowania (Geotechnical investigation and testing — Identification and classification of soil — Part 2: Principles for a classification).
PN-B-02480:1986 Grunty budowlane—Określenia, symbole, podział i opis gruntów (Structural ground—Terms, symbols, division and description of soils).
Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Online: data.europa.eu/eli/dir/1991/676/oj (accessed 25 March 2025).
Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Online: data.europa.eu/eli/dir/2000/60/oj (accessed 25 March 2025).
Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Online: data.europa.eu/eli/dir/2006/118/oj (accessed 25 March 2025).
Hydrological Yearbook, 2023. Rocznik hydrologiczny 2023. Instytut Meteorologii i Gospodarki Wodnej—Państwowy Instytut Badawczy. Online: danepubliczne.imgw.pl/ (accessed September 2024).
License
Copyright (c) 2025 Monika Okońska, Filip Wolny

This work is licensed under a Creative Commons Attribution 4.0 International License.
