The investigation of the lake water/groundwater interaction in the hyporheic zone of a groundwater-dependent lake (Lake Płotki, Poland)
Journal cover Quaestiones Geographicae, volume 44, no. 3, year 2025, title Quaestiones Geographicae
PDF

Keywords

lake recharge-discharge conditions
upwelling
downwelling
gradient metre

How to Cite

Matusiak, M., Marciniak, M., Owsianny, P., & Dragon, K. (2025). The investigation of the lake water/groundwater interaction in the hyporheic zone of a groundwater-dependent lake (Lake Płotki, Poland). Quaestiones Geographicae, 44(3), 111–122. https://doi.org/10.14746/quageo-2025-0025

Abstract

The article presents the investigation of vertical hydraulic gradients (VHGs) between surface water and groundwater in the hyporheic zone of Lake Płotki. The results indicate the presence of lake shoreline sections where groundwater recharges the lake (indicated by upwelling zones) and sections where lake water filtrates into the groundwater system (indicated by downwelling zones). The research indicates the occurrence of hyporheic exchange in the lake shoreline. The spatial extent of the upwelling and downwelling zones appears to depend on the groundwater circulation system and fluctuations in groundwater levels. The local geology was found to influence the boundary between the lake’s recharge and discharge zones. The results presented significantly contribute to the investigation of the lake water/groundwater interaction and to the study of the lake system recharge and discharge conditions by groundwater. This is especially important in the regions where investigation of overall hydrogeological conditions (especially the groundwater flow pattern) is relatively poor. This research may have practical implications for the effective monitoring of water resources in the region.

https://doi.org/10.14746/quageo-2025-0025
PDF

Funding

We would like to express our gratitude to Miejskie Wodociągi i Kanalizacja Sp. z o.o. in Piła – a company of the City of Piła, for their financial support for our research.

References

Adamski Z., 2003. Mapa Hydrograficzna Polski w skali 1:50 000, Arkusz Krajenka. Główny Urząd Geodezji i Kartografii, Warsaw.

Adrian R., O’Reilly C., Zagarese H., Baines S., Hessen D., Keller W., Livingstone D.M., Sommaruga R., Straile D., Van Donk E., Weyhenmeyer G., Winder M., 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283-2297. DOI: https://doi.org/10.4319/lo.2009.54.6_part_2.2283

Bartczak E., 2011. Szczegółowa Mapa geologiczna Polski 1:50 000, arkusz Krajenka nr 0275. Państwowy Instytut Geologiczny Państwowy Instytut Badawczy, Warsaw.

Battin T.J., Kaplan L.A., Newbold J.D., Hendricks S.P., 2003. A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function. Freshwater Biology 48: 995-1014. DOI: https://doi.org/10.1046/j.1365-2427.2003.01062.x

Boano F., Harvey J.W., Marion A., Packman A.I., Revelli R., Ridolfi L., Wörman A., 2014. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics 52: 603-679. DOI: https://doi.org/10.1002/2012RG000417

Boulton A.J., Findlay S., Marmonier P., Stanley E.H., Vallett H.M., 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecological, Evolution, and Systematics 29: 59-81. DOI: https://doi.org/10.1146/annurev.ecolsys.29.1.59

Busato L., Boaga J., Perri M., Majone B., Bellin A., Cassiani G., 2019. Hydrogeophysical characterization and monitoring of the hyporheic and riparian zones: The Vermigliana Creek case study. The Science of the Total Environment 648: 1105-1120. DOI: https://doi.org/10.1016/j.scitotenv.2018.08.179

Chaudhari S., Felfelani F., Shin S., Pokhrel Y., 2018. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. Journal of Hydrology 560: 342-353. DOI: https://doi.org/10.1016/j.jhydrol.2018.03.034

Chmal R., 2006. Szczegółowa Mapa geologiczna Polski 1:50 000, arkusz Krajenka nr 0275. Państwowy Instytut Geologiczny Państwowy Instytut Badawczy, Warsaw.

Choiński A., 2006. Katalog jezior Polski (Catalogue of Polish lakes). Wydawnictwa Naukowe UAM, Poznań.

Choiński A., Jańczak J., Ptak M., 2020. Wahania poziomów wody jezior w Polsce w latach 1956-2015 (Water-level fluctuations in Polish lakes in the 1956-2015 period). Przegląd Geograficzny 92(1): 41-54. DOI: https://doi.org/10.7163/PrzG.2020.1.3

Dobracka E., Lewandowski J., 2002. Strefa marginalna fazy pomorskiej lobu Parsęty (Pomorze Środkowe). In: Dobracki R., Lewandowski J., Zielinski T. (eds), Plejstocen Pomorza Środkowego i strefa marginalna lobu Parsęty – IX Konferencja „Stratygrafia plejstocenu Polski. Państw. Inst. Geol. Oddz. Pom. w Szczecinie i Uniwersytet Śląski, Sosnowiec: 109-121.

European Commission: Directorate-General for Environment, Ecosystems Ltd, Sundseth K., 2015. The EU birds and habitats directives – For nature and people in Europe. Publications Office. Online: https://op.europa.eu/en/publication-detail/-/publication/7230759d-f136-44ae-9715-1eacc26a11af/language-en# (accessed 10 April 2024).

Fathian F., Vaheddoost B., 2021. Modeling the volatility changes in Lake Urmia water level time series. Theoretical and Applied Climatology 143: 61-72. DOI: https://doi.org/10.1007/s00704-020-03417-8

Fetter C.W., 1994. Applied hydrogeology, 3rd Edn. Macmillan College Publishing Company Inc., New York.

Fluet-Chouinard E., Messager M.L., Lehner B., Finlayson C.M., 2017. Freshwater lakes and reservoirs. In: Finlayson C., Milton G.R., Prentice R., Davidson N. (eds), The wetland book. Springer, Dordrecht:125-141. DOI: https://doi.org/10.1007/978-94-007-4001-3_201

Geoportal, 2024. [Geoportal for spatial information infrastructure]. In: the 2022 Numerical Terrain Model. Online: https://mapy.geoportal.gov.pl/wss/service/PZGIK/NMT/WMS/SkorowidzeUkladEVRF2007 (accessed 25 June 2025).

Gregosiewicz R., Włostowski J., Góralska M., 2017. Baza danych GIS Mapy hydrogeologicznej Polski 1:50 000, Pierwszy poziom wodonośny występowanie i hydrodynamika, arkusz Krajenka nr 0275. Państwowy Instytut Geologiczny, Warsaw.

Jamorska I., Kubiak-Wójcicka K., Krawiec A., 2019. Dynamics of the status of groundwater in the Polish Lowland: The river Gwda catchment example. Geologos 25(3): 193-204. DOI: https://doi.org/10.2478/logos-2019-0021

Jańczak J. (ed.), 1996. Atlas jezior Polski Tom 1. Bogucki Wydawnictwo Naukowe, Poznań.

Jiang W., Dai Z., Mei X., Long C., Binh N.A., Van C.M., Cheng J., 2024. Profiling dynamics of the Southeast Asia’s largest lake, Tonle Sap Lake. The Science of the Total Environment 917: 170444. DOI: https://doi.org/10.1016/j.scitotenv.2024.170444

Journal of Laws, 2023. Regulation of the Minister of Climate and Environment of 9 October 2023 on the special habitat protection area Ostoja Pilska (PLH300045). Journal of Laws 2023, item 2290. Online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20230002290 (accessed 10 April 2024).

Keim C., Mehler F., Wolf T., Gilfedder B., 2019. Mapping spatial patterns of groundwater discharge in a deep lake using high-resolution temperature sensors. Inland Waters 9: 334-344. DOI: https://doi.org/10.1080/20442041.2019.1609859

Kidmose J., Engesgaard P., Nilsson B., Laier T., Looms M.C., 2011. Spatial distribution of seepage at a flow-through lake: Lake Hampen, western Denmark. Vadose Zone Journal 10(1): 110-124. DOI: https://doi.org/10.2136/vzj2010.0017

Kotowski T., Kachnic M., 2016. The geochemical study of groundwaters from Cenozoic aquifers in the Gwda catchment (Western Pomerania, Poland). Environmental Earth Sciences 75: 192. DOI: https://doi.org/10.1007/s12665-015-4962-x

Kotowski T., Najman J., Nowobilska-Luberda A., Bergel T., Kaczor G., 2023. Analysis of the interaction between surface water and groundwater using gaseous tracers in a dynamic test at a riverbank filtration intake. Hydrological Processes 37(4): 14862. DOI: https://doi.org/10.1002/hyp.14862

Kowalczak P., Graczyk D., Głowski P., Józefczyk D., 2014. Koncepcja powstrzymania degradacji sieci hydrograficznej kompleksu jezior Okoniowe-Płotki-Jeleniowe-Bagienne w Pile oraz przyległych obszarów wodno-błotnych. Kunke poligrafia Sp. z o.o., Inowrocław.

Liu B., Li Y., Jiang W., Chen J., Shu L., Liu J., 2022. Understanding groundwater behaviors and exchange dynamics in a linked catchment-floodplain-lake system. The Science of the Total Environment 853: 158558. DOI: https://doi.org/10.1016/j.scitotenv.2022.158558

Marciniak M., Chudziak Ł, 2015. A new method of measuring the hydraulic conductivity of the bottom sediment. Przegląd Geologiczny 63: 919-925.

Marciniak M., Ziulkiewicz M., Górecki M., 2022. Variability of water exchange in the hyporheic zone of a lowland river in Poland based on gradientometric studies. Quaestiones Geographicae 41: 141-156. DOI: https://doi.org/10.2478/quageo-2022-0030

Marttila H., Tammela S., Mustonen K.R., Louhi P., Muotka T., Mykrä H., Kløve B., 2019. Contribution of flow conditions and sand addition on hyporheic zone exchange in gravel beds. Hydrology Research 50(3): 878-885. DOI: https://doi.org/10.2166/nh.2019.099

Marzadri A., Tonina D., Bellin A., Valli A., 2016. Mixing interfaces, fluxes, residence times and redox conditions of the hyporheic zones induced by dune-like bedforms and ambient groundwater flow. Advances in Water Resources 88: 139-151. DOI: https://doi.org/10.1016/j.advwatres.2015.12.014

Mugnai R., Messana G., Di Lorenzo T., 2015. The hyporheic zone and its functions: Revision and research status in Neotropical regions. Brazilian Journal of Biology 75(3): 524-534. DOI: https://doi.org/10.1590/1519-6984.15413

Nield S., Townley L., Barr A., 1994. A framework for quantitative analysis of surface water-groundwater interaction: Flow geometry in a vertical section. Water Resources Research 30: 2461-2475. DOI: https://doi.org/10.1029/94WR00796

Nowak B., Ptak M., 2018. Potential use of lakes as a component of small retention in Wielkopolska. E3S Web of Conferences 44: 00127. DOI: https://doi.org/10.1051/e3sconf/20184400127

Owsianny P.M., Gąbka M., 2009. Rynna Jezior Kuźnickich (w tym rezerwat przyrody „Kuźnik”) – cenny fragment specjalnego obszaru ochrony siedlisk Natura 2000 „Ostoja Pilska”. In: Owsianny P.M. (ed.), Rynna Jezior Kuźnickich i rezerwat przyrody Kuźnik – bioróżnorodność, funkcjonowanie, ochrona i edukacja. The Stanislaw Staszic Museum, Piła: 5-23.

Packman A.I., Salehin M., 2003. Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia 494: 291-297. DOI: https://doi.org/10.1007/978-94-017-3366-3_40

Paule-Mercado M.C., Rabaneda-Bueno R., Porcal P., Kopacek M., Huneau F., Vystavna Y., 2024. Climate and land use shape the water balance and water quality in selected European lakes. Scientific Reports 14:8049. DOI: https://doi.org/10.1038/s41598-024-58401-3

PIG-PIB [Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy], 2024. Rocznik Hydrogeologiczny Państwowej Służby Geologicznej. Online: https://www.pgi.gov.pl/psh/materialy-informacyjne-psh/rocznik-hydrogeologiczny-psh.html/ (accessed 10 April 2024).

Rautio A., Korkka-Niemi K., 2015. Chemical and isotopic tracers indicating groundwater/surface-water interaction within a boreal lake catchment in Finland. Hydrogeology Journal 23: 687-705. DOI: https://doi.org/10.1007/s10040-015-1234-5

Roche K.R., Blois G., Best J.L., Christensen K.T., Aubeneau A.F., Packman A.I., 2018. Turbulence links momentum and solute exchange in coarse-grained streambeds. Water Resources Research 54: 3225-3242. DOI: https://doi.org/10.1029/2017WR021992

Rudnick S., Lewandowski J., Nützmann G., 2015. Investigating groundwater-lake interactions by hydraulic heads and a water balance. Ground Water 53: 227-237. DOI: https://doi.org/10.1111/gwat.12208

Santos Correa W., Yoshinaga Pereira S., Bernardes Ayer J.E., Brum Pereira P.R., 2022. Hydrogeochemical evaluation of groundwater and surface water interactions in an alluvial plain, Southeast Brazil. Land Degradation and Development 33: 2911-2931. DOI: https://doi.org/10.1002/ldr.4364

Schulz S., Darehshouri S., Hassanzadeh E., Tajrishy M., Schüth C., 2020. Climate change or irrigated agriculture – What drives the water level decline of Lake Urmia. Scientific Reports 10:236. DOI: https://doi.org/10.1038/s41598-019-57150-y

Smith J., 2005. Groundwater-surface water interactions in the hyporheic zone. Science Report SC030155/SR1. Environment Agency, Bristol.

Smith A.J., Townley L.R., 2002. Influence of regional setting on the interaction between shallow lakes and aquifers. Water Resources Research 38(9): 1171. DOI: https://doi.org/10.1029/2001WR000781

Sojka M., Choinski A., Ptak M., Kanecka-Geszke E., Zhu S., Strzelinski P., 2022. Detection of lake shoreline active zones and water volume changes using digital lake bottom model and water level fluctuations. Geocarto International 37: 13711-13733. DOI: https://doi.org/10.1080/10106049.2022.2082553

Song J., Jiang W., Xu S., Zhang G., Wang L., Wen M., Zhang B., Wang Y., Long Y., 2016. Heterogeneity of hydraulic conductivity and Darcian flux in the submerged streambed and adjacent exposed stream bank of the Beiluo River, northwest China. Hydrogeology Journal 24: 2049-2062. DOI: https://doi.org/10.1007/s10040-016-1449-0

Soria J., Apostolova N., 2022. Decrease in the water level of Lake Prespa (North Macedonia) studied by remote sensing methodology: Relation with hydrology and agriculture. Hydrology 9(6):99. DOI: https://doi.org/10.3390/hydrology9060099

Swanson T.E., Bayani Cardenas M., 2010. Diel heat transport within the hyporheic zone of a pool-riffle-pool sequence of a losing stream and evaluation of models for fluid flux estimation using heat. Limnology and Oceanography 55(4): 1741-1754. DOI: https://doi.org/10.4319/lo.2010.55.4.1741

Timoney K.P., 2024. Climate change has driven multidecadal declines in lake levels in central Alberta, Canada. Lake and Reservoir Management 40: 205-220. DOI: https://doi.org/10.1080/10402381.2024.2323483

Tonina D., Buffington J.M., 2007. Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling. Water Resources Research 43: 01421. DOI: https://doi.org/10.1029/2005WR004328

Townley L.R., Trefry M.G., 2000. Surface water-groundwater interaction near shallow circular lakes: Flow geometry in three dimensions. Water Resources Research 36: 935-948. DOI: https://doi.org/10.1029/1999WR900304

Winter T.C., 1999. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeology Journal 7: 28-45. DOI: https://doi.org/10.1007/s100400050178

Woolway R.I., Kraemer B.M., Lenters J.D., Merchant C.J., O’Reilly C.M., Sharma S., 2020. Global lake responses to climate change. Nature Reviews Earth and Environment 1: 388-403. DOI: https://doi.org/10.1038/s43017-020-0067-5

Wrzesiński D., Ptak M., 2016. Water level changes in Polish lakes during 1976-2010. Journal of Geographical Sciences 26: 83-101. DOI: https://doi.org/10.1007/s11442-016-1256-5

Wu H., Wang S., Wu T., Yao B., Ni Z., 2021. Assessing the influence of compounding factors to the water level variation of Erhai Lake. Water 13(1): 29. DOI: https://doi.org/10.3390/w13010029

Yao F., Livneh B., Rajagopalan B., Wang J., Crétaux J., Wada Y., Berge-Nguyen M., 2023. Satellites reveal widespread decline in global lake water storage. Science 380: 743-749. DOI: https://doi.org/10.1126/science.abo2812