Abstract
Soil formation in polar regions is relatively weakly recognised due to their rarity and spatial dispersion. The main pedological, sedimentological and cryogenic features of the ice-free coasts of Admiralty Bay were described and quantified with an emphasis on the relationship between frost weathering and soil distribution in different landforms. Soil sites were classified according to their location in the profile from the glacier margin in the late 80s of the 20th century to the coast of the bay and investigated in terms of sediment grain characteristics. The studied soil-forming sediments are typical for glacial and periglacial processes in neutral and acidic environments. Soil composition exhibits considerable textural differentiation and depends on the geology and landforms of the association, but first, on contemporary glacial and periglacial processes. Weathered debris and sediments in the ice-free area contain abundant skeletal elements, especially in morainic sediments. Mineral grains in glacier ice are subjected to intensive cryogenic processes, micro-exfoliation and granular micro-disintegration, forming fine-grained fractions. Coastal deposits on raised marine terraces exhibit polygenic features due to their enrichment by fluvial, niveofluvial, glaciofluvial, slope and aeolian sedimentation. Extensive and superficial exfoliation of particles predominates and is typical for frost weathering. The morphology of grain surfaces indicates a slightly aggressive influence on seawater. Therefore, weathered layers are not removed and no etching of quartz grain surfaces is noted. Different variants of Cryosols with Andic, Skeletic, Coarsic, Fluvic, Ornithic, Humic or Gleyic qualifiers were identified in the study area, as well as Turbic Leptosols on one site.
References
Alekseev A., Alekseeva T., Ostroumov V., Siegert C., Gradusov B., 1998. Mineral transformations in permafrost-affected soil. In: 16th World Congress of Soil Science. Vol. 2. Montpellier, Summ: 713.
Araźny A., Kejna M., Sobota I., 2013. Ground temperature at the Henryk Arctowski Station (King George Island, Antarctic) – Case study from the period January 2012 to February 2013. Bulletin of Geography 6: 59-80. DOI: https://doi.org/10.2478/bgeo-2013-0004
Batista R.F., Reichert J.M., Holthusen D., Batistao A.C., Daher M., Schünemann A.L., Filho E.I.F., Schaefer C.E.G.R., Francelino M.R., 2022. Freeze-thaw cycles affecting rheological properties of Antarctic soils. Geoderma 428: 116220. DOI: https://doi.org/10.1016/j.geoderma.2022.116220
Benn D.I., Evans D.J.A., 2010. Glaciers and glaciation. Routledge, Abingdon, New York.
Beyer L., Blume H.P., Sorge C., Schulten H.R., Erlenkeuser H., Schneider D., 1997a. Humus composition and transformations in a Pergelic Cryohemist of Coastal Continental Antarctica. Arctic and Alpine Research 29: 358-365. DOI: https://doi.org/10.2307/1552152
Beyer L., Knicker H., Bölter M., Blume H.P., Bölter M., Vogt B., Schneider D., 1997b. Soil organic matter of suggested spodic horizons in relic ornithogenic soils of coastal continental Antarctica (Casey Station, Wilkes land) in comparison with that of spodic soil horizons in Germany. Soil Science 167: 518-527. DOI: https://doi.org/10.1097/00010694-199707000-00007
Birkenmajer K., 1980a. Geology of Admiralty Bay, King George Island (South Shetland Islands) – An outline. Polish Polar Research 1: 29-54.
Birkenmajer K., 1980b. New place names introduced to the area of Admiralty Bay, King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica 64: 67-87.
Birkenmajer K., 1989. A guide to Tertiary geochronology of King George Island, West Antarctica. Polish Polar Research 10: 555-579.
Birkenmajer K., 1997. Quaternary geology at Arctowski Station, King George Island, South Shetland Islands (West Antarctica). Studia Geologica Polonica 110: 91-104.
Birkenmajer K., 2002. Retreat of Ecology Glacier, Admiralty Bay, King George Island (South Shetland Islands, West Antarctica), 1956-2001. Bulletin of the Polish Academy of Sciences. Earth sciences 50: 15-29.
Bockheim J.G., Mazhitova G., Kimble J.M., Tarnocai C., 2006. Controversies on the genesis and classification of permafrost-affected soils. Geoderma 137: 33-39. DOI: https://doi.org/10.1016/j.geoderma.2006.08.019
Bockheim J.G., Tarnocai C., 1998. Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma 81: 281-293. DOI: https://doi.org/10.1016/S0016-7061(97)00115-8
Bölter M., 2011. Soil development and soil biology on King George Island (Maritime Antarctic). Polish Polar Research 32: 105-116. DOI: https://doi.org/10.2478/v10183-011-0002-z
Boulton G.S., Deynoux M., 1981. Sedimentation in glacial environments and the identification of tills and tillites in ancient sedimentary sequences. Precambrian Research 15: 397-422. DOI: https://doi.org/10.1016/0301-9268(81)90059-0
Boulton G.S., Dobbie K.E., 1993. Consolidation of sediments by glaciers: Relations between sediment geotechnics, soft-bed glacier dynamics and subglacial ground-water flow. Journal of Glaciology 39: 26-44. DOI: https://doi.org/10.3189/S0022143000015690
Brodzikowski K., van Loon A.J., 1987. A systematic classification of glacial and periglacial environments, facies and deposits. Earth-Science Reviews 24: 297-381. DOI: https://doi.org/10.1016/0012-8252(87)90061-4
Burton-Johnson A., Riley T.R., 2015. Autochthonous v. accreted terrane development of continental margins: A revised in situ tectonic history of the Antarctic Peninsula. Journal of the Geological Society of London 172: 822-835. DOI: https://doi.org/10.1144/jgs2014-110
Campbell J.B., Claridge G.G.C., 1987. Antarctica: Soils, weathering processes and environment. Elsevier, Amsterdam, Oxford, New York.
Cleary W.J., Conolly J.R., 1972. Embayed quartz grains in soils and their significance. Journal of Sedimentary Research 42: 899-904. DOI: https://doi.org/10.1306/74D7266C-2B21-11D7-8648000102C1865D
Dąbski M., Zmarz A., Rodzewicz M., Korczak-Abshire M., Karsznia I., Lach K., Rachlewicz G., Chwedorzewska K., 2020. Mapping glaciers forelands based on UAV BVLOS operation in Antarctica. Remote Sensing 21: 630. DOI: https://doi.org/10.3390/rs12040630
Everett K.R., 1976. A survey of the soils in the region of the South Shetland Islands and adjacent part of the Antarctic Peninsula, Vol. 58. The Ohio State University. Institute of Polar Studies Reports: 1-44.
Everett K.R., Brown J., 1982. Some recent trends in the physical and chemical characterization and mapping of tundra soils, arctic slope of Alaska. Soil Science 133: 264-280. DOI: https://doi.org/10.1097/00010694-198205000-00002
Ferron F.A., Simões J.C., Aquino F.E., Setzer A.W., 2004. Air temperature time series for Kong George Island, Antarctica. Pesquisa Antártica Brasileira 4: 155-169. DOI: https://doi.org/10.31789/pab.v4n1.012
Folk R.L., Ward W.C., 1957. Brazos River bar; a study in the significance of grain size parameters. Journal of Sedimentary Research 27(1): 3-26. DOI: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
Francelino M.R., Schaefer C.E.G.R., Simas F.N.B., Filho E.I.F., de Souza J.J.L.L., da Costa L.M., 2011. Geomorphology and soils distribution under paraglacial conditions in an ice-free area of Admiralty Bay, King George Island, Antarctica. Catena 85: 194-204. DOI: https://doi.org/10.1016/j.catena.2010.12.007
Gonera P., Rachlewicz G., 1997. Snow cover in the vicinity of Arctowski Station, King George Island, in winter 1991. Polish Polar Research 18: 3-14.
Guglielmin M., Ellis Evans C.J., Cannone N., 2008. Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica). Geoderma 144: 73-85. DOI: https://doi.org/10.1016/j.geoderma.2007.10.010
IUSS Working Group WRB., 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps, 4th Edn. International Union of Soil Sciences (IUSS), Vienna, Austria.
Iverson N.R., 2012. A theory of glacial quarrying for landscape evolution models. Geology 40: 679-682. DOI: https://doi.org/10.1130/G33079.1
Julieret J., Dondeyene S., Vancampenhout K., Deckers J., Hissler C., 2016. Mind the gap: A classification system for integrating subsolum into soil surveys. Geoderma 264: 332-339. DOI: https://doi.org/10.1016/j.geoderma.2015.08.031
Kejna M., Araźny A., Sobota I., 2013. Climatic change on King George Island in the years 1948-2011. Polish Polar Research 34: 213-235. DOI: https://doi.org/10.2478/popore-2013-0004
Klimowicz Z., Uziak S., 1996. Arctic soil properties associated with micro-relief forms in the Bellsund region (Spitsbergen). Catena 28: 135-149. DOI: https://doi.org/10.1016/S0341-8162(96)00033-1
Kostrzewski A., Rachlewicz G., Zwoliński Z., 2002. The relief of the western coast of Admiralty Bay, King George Island, South Shetlands. Quaestiones Geographicae 22: 43-58.
Krajewski K., 1986. On aeolian processes near H. Arctowski Station, King George Island, South Shetlands. Biuletyn Peryglacjalny 31: 171-181.
Krygowski B., 1964. Mechanical Graniphormametry: Theory, Applications. Prace Komisji Geograficzno-Geologicznej Poznańskiego Towarzystwa Przyjaciół Nauk 2: 1-112.
Lopes D.V., de Oliveira F.S., Pereira T.T.C., Schaefer C.E.G.R., 2022. Pedogeomorphology and weathering at Snow Island, Maritime Antarctica. Catena 217: 106515. DOI: https://doi.org/10.1016/j.catena.2022.106515
Lopes D.V., de Souza J.J.L.L., de Oliveira F.S., Schefer C.E.G.R., 2017. Solos e evolucao da paisagem em ambiente periglacial Peninsula Barton, Antartica Maritima. Revista do Departamento de Geografia Universidade de Sao Paulo Especial – Eixo 11: 259-267. DOI: https://doi.org/10.11606/rdg.v0ispe.132721
Lopes D.V., Schaefer C.E.G.R., de Souza J.J.L.L., de Oliveira F.S., Simas F.N.B., Daher M., Gjorup D.F., 2019. Concretionary horizons, unusual pedogenetic processes and features of sulfate affected soils from Antarctica. Geoderma 347: 13-24. DOI: https://doi.org/10.1016/j.geoderma.2019.03.024
Lowe J.J., Walker M., 2014. Reconstructing quaternary environments. Routledge, London. DOI: https://doi.org/10.4324/9781315844312
Lupachev A.V., Abakumov E.V., Goryachkin S., Veremeeva A., 2020. Soil cover of the Fildes Peninsula (King George Island, West Antarctica). Catena 193: 104613. DOI: https://doi.org/10.1016/j.catena.2020.104613
Lupachev A., Abakumov E., Gubin S., 2017. The influence of cryogenic mass exchange on the composition and stabilization rate of soil organic matter in Cryosols of the Kolyma Lowland (North Yakutia, Russia). Geosciences 7: 24. DOI: https://doi.org/10.3390/geosciences7020024
Mackay J.R., 1981. Active layer slope movement in a continuous permafrost environment, Garry Island, Northwest Territories, Canada. Canadian Journal of Earth Sciences 18: 1666-1680. DOI: https://doi.org/10.1139/e81-154
Marshall G.J., King J.C., 1998. Southern hemisphere circulation anomalies associated with extreme Antarctic Peninsula winter temperatures. Geophysical Research Letters 25: 2437-2440. DOI: https://doi.org/10.1029/98GL01651
Menzies J., van der Meer J.J.M., Rose J., 2006. Till—as a glacial “tectomict”, its internal architecture, and the development of a “typing” method for till differentiation. Geomorphology 75: 172-200. DOI: https://doi.org/10.1016/j.geomorph.2004.02.017
Morgan R.M., Robertson J., Lennard C., Hubbard K., Bull P.A., 2010. Quartz grain surface textures of soils and sediments from Canberra, Australia: A forensic reconstruction tool. Australian Journal of Forensic Sciences 42: 169-179. DOI: https://doi.org/10.1080/00450610903258110
Munsell A.H., 1975. Munsell Soil Color Charts. Munsell Color Company, Baltimore.
Myrcha A., Tatur A., 1991. Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Polish Polar Research 12: 3-24.
Myślińska E., 1998. Laboratoryjne badania gruntów. Wydawnictwo Naukowe PWN, Warszawa.
Navas A., Lopez-Martinez J., Casas J., Machin J., Durán J.J., Serrano E., Cuchi J.A., Mink S., 2008. Soil characteristics on varying lithological substrates in the South Shetland Islands, maritime Antarctica. Geoderma 144: 123-139. DOI: https://doi.org/10.1016/j.geoderma.2007.10.011
Pereira T.T.C., Schaefer C.E.R.G., Ker J.C., Almeida C.C., Almeida I.C.C., Pereira A.B., 2013. Genesis, mineralogy and ecological significance of ornithogenic soils from a semi-desert polar landscape at Hope Bay, Antarctic Peninsula. Geoderma 209-210: 98-109. DOI: https://doi.org/10.1016/j.geoderma.2013.06.012
Pietr J.S., Tatur A., Myrcha A., 1983. Mineralization of penguin excrements in the Admiralty Bay region (King George Island, South Shetland Islands, Antarctica). Polish Polar Research 4: 97-112.
Ping C.L., Michaelson G.J., Kimble J.M., Romanovsky V.E., Shur Y.L., Swanson D.K., Walker D.A., 2008. Cryogenesis and soil formation along a bioclimate gradient in Arctic North America. Journal of Geophysical Research 113: G03S12. DOI: https://doi.org/10.1029/2008JG000744
Rachlewicz G., 1997. Mid-winter thawing in the vicinity of Arctowski Station, King George Island. Polish Polar Research 18: 15-24.
Rachlewicz G., 1999. Glacial relief and deposits of the western coast of Admiralty Bay, King George Island, South Shetland Islands. Polish Polar Research 20: 89-130.
Rachlewicz G., Strzelecki M.C., Kasprzak M., 2017. Wpływ procesów peryglacjalnych na rozwój skalnych wybrzeży w morskiej strefie Antarktyki (Wyspa Króla Jerzego, Szetlandy Południowe. In: Kostrzewski A., Winowski M. (eds), Geoekosystem wybrzeży morskich. Vol. 3. UAM w Poznaniu, Stacja Monitoringu Środowiska Przyrodniczego, Poznań, Biała Góra: 155-156.
Rakusa-Suszczewski S., Mietus M., Piasecki J., 1993. Weather and climate. In: Rakusa-Suszczewski S. (ed.), The maritime Antarctic coastal ecosystem of Admiralty Bay. Polish Academy of Sciences, Warsaw: 19-25.
Simas F.N.B., Schaefer C.E.G.R., Albuquerque Filho M.R., Francelino M.R., Fernandes Filho E.I., da Costa L.M., 2008. Genesis, properties and classification of Cryosols from Admiralty Bay, maritime Antarctica. Geoderma 144: 116-122. DOI: https://doi.org/10.1016/j.geoderma.2007.10.019
Simas F.N., Schaefer C.E.R.G., Melo V.F., Guerra M.B.B., Saunder M., Gilkes R.J., 2006. Clay-sized minerals in permafrost-affected soils (Cryosols) from King George Island, Antarctica. Clays and Clay Minerals 54: 721-736. DOI: https://doi.org/10.1346/CCMN.2006.0540607
Smykla J., Drewnik M., Szarek-Gwiazda E., Hii Y.S., Knap W., Emslie S.D., 2015. Variation in the characteristics and development of soils at Edmonson point due to abiotic and biotic factors, northern Victoria Land, Antarctica. Catena 132: 56-67. DOI: https://doi.org/10.1016/j.catena.2015.04.011
Smykla J., Szarek-Gwiazda E., Drewnik M., Knap W., Emslie S.D., 2018. Natural variability of major and trace elements in non-ornithogenic Gelisoils at Edmonson Point, northern Victoria Land, Antarctica. Polish Polar Research 39: 19-50.
Smykla J., Wołek J., Barcikowski A., 2007. Zonation of vegetation related to penguin rookeries on King George Island, Maritime Antarctic. Arctic, Antarctic and Alpine Research 39: 1-24. DOI: https://doi.org/10.1657/1523-0430(2007)39[143:ZOVRTP]2.0.CO;2
Sobota I., Kejna M., Araźny A., 2015. Short-term mass changes and retreat of the Ecology and Sphinx glacier system, King George Island, Antarctic Peninsula. Antarctic Science 27: 500-510. DOI: https://doi.org/10.1017/S0954102015000188
Speir T.W., Cowling J.C., 1984. Ornithogenic soils of the Cape Bird adelie penguin rookeries, Antarctica. Polar Biology 2: 199-205. DOI: https://doi.org/10.1007/BF00263625
Stastna V., 2010. Spatio-temporal changes in surface air temperature in the region of the northern Antarctic Peninsula and South Shetland islands during 1950-2003. Polar Science 4: 18-33. DOI: https://doi.org/10.1016/j.polar.2010.02.001
Status of Antarctic Specially Protected Area and Antarctic Specially Managed Area Management Plans. 2016. Online: https://documents.ats.aq/ATCM39/WW/atcm39_ww003_e.pdf (accessed 16 December 2024).
Tatur A., Barczuk A., 1984. Phosphates of ornithogenic soils on the volcanic King George Island (Maritime Antarctic). Polish Polar Research 5: 61-97. DOI: https://doi.org/10.1007/978-3-642-82275-9_22
Tatur A., Barczuk A., del Valle R., Sletten R., Kicińska E., 1993. Surface mineralization on Seymour Island, Antarctica. Polish Polar Research 14: 153-168.
Tatur A., Myrcha A., 1983. Change in chemical composition of waters running off from the penguin rookeries in the Admiralty Bay region (King George Island, South Shetland Islands, Antarctica). Polish Polar Research 4: 113-125.
Tatur A., Myrcha A., 1984. Ornithogenic soils on King George Island, South Shetland Islands (Maritime Antarctic Zone). Polish Polar Research 5: 31-60.
Ugolini F.C., Bockheim J.G., 2008. Antarctic soils and soil formation in a changing environment: A review. Geoderma 144: 1-8. DOI: https://doi.org/10.1016/j.geoderma.2007.10.005
Wilson M.J., 2020. Dissolution and formation of quartz in soil environments: A review. Soil Science Annual 71: 99-110. DOI: https://doi.org/10.37501/soilsa/122398
Yan X., Li X., Liu X., Zhang R., 2005. Evidence for warmer event from quartz grains in the soil of Grove Mountains, East Antarctica. Advances in Polar Science 16: 55-58.
Zieliński A., 1997. Heat balance dynamics of the ground surface layer at King George Island (South Shetland Islands). In: 24th Polar Symposium, Abstract Book, Polish Academy of Sciences, Warszawa: 237-239.
Zmarz A., Rodzewicz M., Dąbski M., Karsznia I., Korczak-Abshire M., Chwedorzewska K.J., 2018. Application of UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem. Remote Sensing of Environment 217: 375-388. DOI: https://doi.org/10.1016/j.rse.2018.08.031
Zwoliński Z., 2007. The mobility of mineral matter in paraglacial areas. King George Island, Western Antarctica. Wydawnictwo Naukowe UAM, Poznań, Seria Geografia: 74.
Zwoliński Z., Kejna M., Rachlewicz G., Sobota I., Szpikowski J., 2016. Solute and sedimentary fluxes on King George Island. In: Beylich A.A., Dixon J.C., Zwoliński Z. (eds), Source-to-sink fluxes in undisturbed cold environments. Cambridge University Press, Cambridge: 213-237. DOI: https://doi.org/10.1017/CBO9781107705791.018
License
Copyright (c) 2025 Artur Zieliński, Joanna Krupa-Kurzynowska, Grzegorz Rachlewicz, Krzysztof Jarzyna

This work is licensed under a Creative Commons Attribution 4.0 International License.
