Abstract
Cities are places with concentrations of people and the effects of their activities, which are particularly exposed to the impacts of climate change. In this respect, one of the challenges for planners and decision-makers is urban heat mitigation regarding the higher intensity of heat islands and heat waves. Shaping urban tissue is fundamental in ensuring thermal comfort for city dwellers. Particular attention should be paid to children as they are more vulnerable to thermal stress. Hence, the study aims to enhance climate-sensitive urban planning and policy by providing evidence on the impact of green infrastructure (GI) and small-scale nature-based solutions (NBSs) such as preschool gardens (PGs) in urban heat mitigation in Poznań, Poland. In addition to recognising the thermal conditions of PGs, we investigated their thermal impact on the surrounding areas. We also analysed preschoolers’ exposure to urban heat during their stay in PGs. The study employed Geographic Information System (GIS) and remote sensing data from Landsat 8 to generate the normalised difference vegetation index (NDVI) and surface temperature rasters. The results reveal that the thermal impact of PGs depends on their size, NDVI and the tree canopy cover (TCC) of both PGs and their surroundings. PGs are valuable areas that regulate thermal conditions in the city. We recommend optimising PGs into more nature-oriented spaces (NDVI > 0.3) that might play the additional role of site-scale cooling shelters. The universal methodology developed and adopted in the study allows for scaling the research to other cities in the temperate climate zone.
References
Antoniadis D., Katsoulas N., Papanastasiou D.Κ., 2020. Thermal environment of urban schoolyards: Current and future design with respect to children’s thermal comfort. Atmosphere 11: 1144. DOI: https://doi.org/10.3390/atmos11111144
Arellano B., Roca J., 2022. Assessing urban greenery using remote sensing. In: Earth Observing Systems XXVII. SPIE, San Diego, United States: 19. DOI: https://doi.org/10.1117/12.2632674
Bäcklin O., Lindberg F., Thorsson S., Rayner D., Wallenberg N., 2021. Outdoor heat stress at preschools during an extreme summer in Gothenburg, Sweden – Preschool teachers’ experiences contextualized by radiation modelling. Sustainable Cities and Society 75: 103324. DOI: https://doi.org/10.1016/j.scs.2021.103324
Bąkowska-Waldmann E., Piniarski W., 2023. Gender-specific preferences regarding urban green areas. Quaestiones Geographicae 42(4): 23-41. DOI: https://doi.org/10.14746/quageo-2023-0037
Barcelona Regional, 2019. Espais de refugi climàtic metropolitans. Barcelona Regional, Agència Desenvolupament Urbà, Barcelona.
Baró F., Camacho D.A., Pérez Del Pulgar C., Triguero-Mas M., Anguelovski I., 2021. School greening: Right or privilege? Examining urban nature within and around primary schools through an equity lens. Landscape and Urban Planning 208: 104019. DOI: https://doi.org/10.1016/j.landurbplan.2020.104019
Bartesaghi-Koc C., Osmond P., Peters A., 2019. Mapping and classifying green infrastructure typologies for climate-related studies based on remote sensing data. Urban Forestry and Urban Greening 37: 154-167. DOI: https://doi.org/10.1016/j.ufug.2018.11.008
BDOT10k (Topographic Objects Database BDOT10k), 2022. Baza Danych Obiektów Topograficznych BDOT10k. National Geodetic and Cartographic Resource (Poland), Head Office of Geodesy and Cartography (GUGiK). https://www.geoportal.gov.pl/pl/dane/baza-danych-obiektow-topograficznych-bdot10k/ (accessed 3 November 2022).
Bowler D.E., Buyung-Ali L.M., Knight T.M., Pullin A.S., 2010. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 10. DOI: https://doi.org/10.1186/1471-2458-10-456
Cao X., Onishi A., Chen J., Imura H., 2010. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape and Urban Planning 96: 224-231. DOI: https://doi.org/10.1016/j.landurbplan.2010.03.008
Cartalis C., 2020. Climate Shelters Journal 2: Update on Barcelona’s project. Urban Innovative Actions. Retrieved from https://www.uia-initiative.eu/en/news/climate-shelters-journal-2-update-barcelonas-project (accessed 23 October 2022)
Chibuike E.M., Ibukun A.O., Abbas A., Kunda J.J., 2018. Assessment of green parks cooling effect on Abuja urban microclimate using geospatial techniques. Remote Sensing Applications: Society and Environment 11: 11-21. DOI: https://doi.org/10.1016/j.rsase.2018.04.006
Cook M., Schott J., Mandel J., Raqueno N., 2014. Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) Product from the archive. Remote Sensing 6: 11244-11266. DOI: https://doi.org/10.3390/rs61111244
Cortesão J., Alves F.B., Corvacho H., Rocha C., 2016. Retrofitting public spaces for thermal comfort and sustainability. Indoor and Built Environment 25: 1085-1095. DOI: https://doi.org/10.1177/1420326X16659326
Danks S.G., 2010. Asphalt to ecosystems: Design ideas for schoolyard transformation. New Village Press, China. DOI: https://doi.org/10.2307/j.ctt21pxmpd
Department of Education of Poznan City Hall, 2019. Preschools and preschoolers in Poznań in 2019. City Register Data (spreadsheet) (in Polish).
EEA (European Environment Agency), 2020. Urban Atlas LCLU 2018 (v013). European Union, Copernicus Land Monitoring Service, European Environment Agency, Copenhagen, Denmark.
EROS (Earth Resources Observation and Science Center), 2024. Landsat 8-9 Operational Land Imager and Thermal Infrared Sensor Collection 2 Level-2: U.S. Geological Survey data release, Sioux Falls, South Dakota, USA.
Estoque R.C., Murayama Y., Myint S.W., 2017. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of the Total Environment 577: 349-359. DOI: https://doi.org/10.1016/j.scitotenv.2016.10.195
EU (European Union), 2013. Green infrastructure (GI)—Enhancing Europe’s natural capital. Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of the Regions, COM/2013/0249 final EU Commission – COM Document, Brussels, Belgium (2013). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52013DC0249 (accessed 14 November 2022).
EU (European Union), 2015. Towards an EU Research and Innovation Policy Agenda for Nature-based Solutions & Re-Naturing Cities. Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions and Re-Naturing Cities’. Directorate-general for Research and Innovation Climate Action, Environment, Resource Efficiency and Raw Materials. EU, Brussels, Belgium. https://www.ec.europa.eu/newsroom/horizon2020/document.cfm?doc_id=10195 (accessed 9 October 2024).
Feyisa G.L., Dons K., Meilby H., 2014. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape and Urban Planning 123: 87-95. DOI: https://doi.org/10.1016/j.landurbplan.2013.12.008
Gage R., Wilson N., Signal L., Thomson G., 2019. Shade in playgrounds: Findings from a nationwide survey and implications for urban health policy. Journal of Public Health 27: 669-674. DOI: https://doi.org/10.1007/s10389-018-0990-9
Gill S.E., Handley J.F., Ennos A.R., Pauleit S., 2007. Adapting cities for climate change: The role of the green infrastructure. Built Environment 33: 115-133. DOI: https://doi.org/10.2148/benv.33.1.115
Grilo F., Pinho P., Aleixo C., Catita C., Silva P., Lopes N., Freitas C., Santos-Reis M., McPhearson T., Branquinho C., 2020. Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Science of the Total Environment 724: 138182. DOI: https://doi.org/10.1016/j.scitotenv.2020.138182
Gromke C., Blocken B., Janssen W., Merema B., van Hooff T., Timmermans H., 2015. CFD analysis of transpirational cooling by vegetation: Case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands. Building and Environment 83: 11-26. DOI: https://doi.org/10.1016/j.buildenv.2014.04.022
Huang S., Tang L., Hupy J.P., Wang Y., Shao G., 2021. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research 32: 1-6. DOI: https://doi.org/10.1007/s11676-020-01155-1
IMWM (Institute of Meteorology and Water Management), 2023. Rocznik Meteorologiczny 2022 (Meteorological Yearbook 2022). Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy, Warsaw (in Polish).
Jang S., Bae J., Kim Y., 2024. Street-level urban heat island mitigation: Assessing the cooling effect of green infrastructure using urban IoT sensor big data. Sustainable Cities and Society 100: 105007. DOI: https://doi.org/10.1016/j.scs.2023.105007
Jones L., Anderson S., Laessøe J., Banzhaf E., Jensen A., Bird D.N., Miller J., Hutchins M.G., Yang J., Garrett J., Taylor T., Wheeler B.W., Lovell R., Fletcher D., Qu Y., Vieno M., Zandersen M., 2022. A typology for urban green infrastructure to guide multifunctional planning of nature-based solutions. Nature-Based Solutions 2: 100041. DOI: https://doi.org/10.1016/j.nbsj.2022.100041
Kabisch N., van den Bosch M., Lafortezza R., 2017. The health benefits of nature-based solutions to urbanization challenges for children and the elderly – A systematic review. Environmental Research 159: 362-373. DOI: https://doi.org/10.1016/j.envres.2017.08.004
Kim Y., An S., Eum J.H., Woo J.H., 2016. Analysis of thermal environment over a small-scale landscape in a densely built-up Asian megacity. Sustainability 8: 358. DOI: https://doi.org/10.3390/su8040358
Kim J., Khouakhi A., Corstanje R., Johnston A.S.A., 2024. Greater local cooling effects of trees across globally distributed urban green spaces. Science of the Total Environment 911: 168494. DOI: https://doi.org/10.1016/j.scitotenv.2023.168494
Lanza K., Alcazar M., Hoelscher D.M., Kohl H.W., 2021. Effects of trees, gardens, and nature trails on heat index and child health: Design and methods of the Green Schoolyards Project. BMC Public Health 21/98: 1-12. DOI: https://doi.org/10.1186/s12889-020-10128-2
Lee H.Y., 1993. An application of NOAA AVHRR thermal data to the study of urban heat islands. Atmospheric Environment. Part B. Urban Atmosphere 27: 1-13. DOI: https://doi.org/10.1016/0957-1272(93)90041-4
Lehnert M., Tokar V., Jurek M., Geletič J., 2021. Summer thermal comfort in Czech cities: Measured effects of blue and green features in city centres. International Journal of Biometeorology 65: 1277-1289. DOI: https://doi.org/10.1007/s00484-020-02010-y
Lillesand T.M., Kiefer R.W., Chipman J.W., 2004. Remote sensing and image interpretation, 5th ed. John Wiley & Sons Inc, New York.
Lin B.B., Gaston K.J., Fuller R.A., Wu D., Bush R., Shanahan D.F., 2017. How green is your garden?: Urban form and socio-demographic factors influence yard vegetation, visitation, and ecosystem service benefits. Landscape and Urban Planning 157: 239-246. DOI: https://doi.org/10.1016/j.landurbplan.2016.07.007
Lo C.P., Quattrochi D.A., 2003. Land-use and land-cover change, urban heat island phenomenon, and health implications. Photogrammetric Engineering and Remote Sensing 69: 1053-1063. DOI: https://doi.org/10.14358/PERS.69.9.1053
Łowicki D., Kuklińska E., 2025. Potencjał chłodzący terenów zieleni na przykładzie parków miejskich Poznania i Wrocławia (Cooling potential of green areas on the example of urban parks in Poznań and Wrocław). Rozwój Regionalny i Polityka Regionalna 73: 253-271. DOI: https://doi.org/10.14746/rrpr.2025.73.15
LSDS (Landsat Science Data System), 2020. Landsat 8 Collection 2 (C2) Level 2 Science Product (L2SP) Guide (LSDS-1619 Version 2.0). U.S. Geological Survey, EROS, Sioux Falls, South Dakota.
Majkowska A., Kolendowicz L., Półrolniczak M., Hauke J., Czernecki B., 2017. The urban heat island in the city of Poznań as derived from Landsat 5 TM. Theoretical and Applied Climatology 128: 769-783. DOI: https://doi.org/10.1007/s00704-016-1737-6
Malmquist A., Lundgren T., Hjerpe M., Glaas E., Turner E., Storbjörk S., 2021. Vulnerability and adaptation to heat waves in preschools: Experiences, impacts and responses by unit heads, educators and parents. Climate Risk Management 31: 100271. DOI: https://doi.org/10.1016/j.crm.2020.100271
Moogk-Soulis C., 2002. Schoolyard heat islands: A case study in Waterloo, Ontario. 5th Canadian Urban Forest Conference October 7-9, 2002, Region of York, Ontario Markham. https://www.moogk-soulis.com/wp-content/uploads/2011/05/Moogk-Soulis.pdf (accessed 12 November 2024).
Moogk-Soulis C., 2010. Schoolyard and public space heat islands. A study in Windsor-Essex, Sarnia-Lambton and Chatham-Kent, Ontario. Prepared for: Riverside Optimist Club, Windsor and the Public Health Units of Windsor-Essex, Sarnia-Lambton, and Chatham-Kent, October 5-6, Windsor, Sarnia, Chatham.
Norton B.A., Coutts A.M., Livesley S.J., Harris R.J., Hunter A.M., Williams N.S.G., 2015. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning 134: 127-138. DOI: https://doi.org/10.1016/j.landurbplan.2014.10.018
Oke T.R., Mills G., Christen A., Voogt J.A., 2017. Urban Climates. Cambridge University Press, Cambridge, United Kingdom. DOI: https://doi.org/10.1017/9781139016476
Oliveira S., Andrade H., Vaz T., 2011. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Building and Environment 46: 2186-2194. DOI: https://doi.org/10.1016/j.buildenv.2011.04.034
Pegram J., Colon C., 2020. A guide for an action: Are climate change policies child-sensitive? United Nations Children’s Fund (UNICEF), NY, USA.
Półrolniczak M., Tomczyk A., Kolendowicz L., 2018. Thermal conditions in the city of Poznań (Poland) during selected heat waves. Atmosphere 9: 11. DOI: https://doi.org/10.3390/atmos9010011
Qiu G., Li H., Zhang Q., Chen W., Liang X., Li X., 2013. Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. Journal of Integrative Agriculture 12: 1307-1315. DOI: https://doi.org/10.1016/S2095-3119(13)60543-2
Qi J., Wang J., Zhai W., Wang J., Jin Z., 2022. Are there differences in thermal comfort perception of children in comparison to their caregivers’ judgments? A study on the playgrounds of parks in China’s hot summer and cold winter region. Sustainability 14: 10926. DOI: https://doi.org/10.3390/su141710926
Rose K.A., Morgan I.G., Ip J., Kifley A., Huynh S., Smith W., Mitchell P., 2008. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 115: 1279-1285. DOI: https://doi.org/10.1016/j.ophtha.2007.12.019
Roth M., Oke T.R., Emery W.J., 1989. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. International Journal of Remote Sensing 10: 1699-1720. DOI: https://doi.org/10.1080/01431168908904002
Saaroni H., Amorim J.H., Hiemstra J.A., Pearlmutter D., 2018. Urban green infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Climate 24: 94-110. DOI: https://doi.org/10.1016/j.uclim.2018.02.001
Shih W., 2017. The cooling effect of green infrastructure on surrounding built environments in a sub-tropical climate: A case study in Taipei metropolis. Landscape Research 42: 558-573. DOI: https://doi.org/10.1080/01426397.2016.1235684
SISP (Spatial Information System of Poznań), 2018. Korony drzew (Tree canopy). Portal of the spatial information system of the city of Poznań, GEOPOZ Poznań, Poland, https://sip.poznan.pl/sip/zielen2/drz1 (accessed 9 November 2024).
SISP (Spatial Information System of Poznań), 2021. Portal of the spatial information system of the city of Poznań. GEOPOZ Poznań, Poland, https://sipmapy.geopoz.poznan.pl/sipportal/ (accessed 03 March 2023).
Sitzoglou M., 2020. The OASIS Schoolyards project Journal No 1. Urban innovative actions – The urban lab of Europe! Retrieved from https://uia-initiative.eu/sites/default/files/2020-06/Paris_OASIS_Journal.pdf (accessed 23 October 2022).
Solecki W., Rosenzweig C., Dhakal S., Roberts D., Barau A.S., Schultz S., Ürge-Vorsatz D., 2018. City transformations in a 1.5°C warmer world. Nature Climat Change 8: 177-181. DOI: https://doi.org/10.1038/s41558-018-0101-5
Soltanifard H., Amani-Beni M., 2025. The cooling effect of urban green spaces as nature-based solutions for mitigating urban heat: Insights from a decade-long systematic review. Climate Risk Management 49: 100731. DOI: https://doi.org/10.1016/j.crm.2025.100731
Statistics Poland, 2022. Rocznik Demograficzny Polski 2022 (Demographic Yearbook of Poland 2022). Statistical Publishing Establishment, Statistics Poland, Warsaw (in Polish). https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5515/3/15/1/rocznik_demograficzny_2021.pdf (accessed 05 December 2022).
Storey J., Choate M., Moe D., 2014. Landsat 8 thermal infrared sensor geometric characterization and calibration. Remote Sensing 6: 11153-11181. DOI: https://doi.org/10.3390/rs61111153
Sun R., Liu J., Lai D., Liu W., 2023. Building form and outdoor thermal comfort: Inverse design the microclimate of outdoor space for a kindergarten. Energy and Buildings 284: 112824. DOI: https://doi.org/10.1016/j.enbuild.2023.112824
Tomczyk A.M., Bednorz E., 2016. Heat waves in Central Europe and their circulation conditions. International Journal of Climatology 36: 770-782. DOI: https://doi.org/10.1002/joc.4381
Tomczyk A.M., Bednorz E. (eds), 2022. Atlas Klimatu Polski (1991-2020) (Atlas of the Climate of Poland 1991-2020). Bogucki Wydawnictwo Naukowe, Poznań, Poland (in Polish). https://hdl.handle.net/10593/26990
Tomlinson C.J., Chapman L., Thornes J.E., Baker C., 2011. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorological Applications 18: 296-306. DOI: https://doi.org/10.1002/met.287
UCAP (Urban Climate Adaptation Plan), 2019. Miejski Plan Adaptacji do Zmian Klimatu Miasta Poznania do Roku 2030 (Municipal Climate Adaptation Plan of the City of Poznań until 2030). Resolution No. X/144/VIII/2019 of the Poznań City council of April 16, 2019 on the adoption of the municipal plan of adaptation to climate change for the city of Poznań (in Polish). https://bip.poznan.pl/bip/uchwaly/uchwala-nr-x-144-viii-2019-z-dnia-2019-04-16,78779/ (accessed 05 December 2022).
UN (United Nations), 2019. Population division. World urbanisation prospects: The 2018 revision (ST/ESA/SER.A/420). United Nations, Department of Economic and Social Affairs, New York.
UNICEF, 2024. Beat the heat: Child health amid heatwaves in Europe and Central Asia. Policy Brief, New York, USA.
USGS (United States Geological Survey), 2019. Landsat 8 (L8) data users handbook (LSDS-1574 Version 5.0). Department of the Interior U.S. Geological Survey, EROS, Sioux Falls, South Dakota.
van den Bogerd N., Hovinga D., Hiemstra J.A., Maas J., 2023. The potential of green schoolyards for healthy child development: A conceptual framework. Forests 14: 660. DOI: https://doi.org/10.3390/f14040660
Vanos J.K., 2015. Children’s health and vulnerability in outdoor microclimates: A comprehensive review. Environment International 76: 1-15. DOI: https://doi.org/10.1016/j.envint.2014.11.016
Vanos J.K., Herdt A.J., Lochbaum M.R., 2017. Effects of physical activity and shade on the heat bal-ance and thermal perceptions of children in a playground microclimate. Building and Environment 126: 119-131. DOI: https://doi.org/10.1016/j.buildenv.2017.09.026
Voogt J.A., Oke T.R., 2003. Thermal remote sensing of urban climates. Remote Sensing of Environment 86: 370-384. DOI: https://doi.org/10.1016/S0034-4257(03)00079-8
Walawender J., 2009. Wykorzystanie danych satelitarnych Landsat i technik GIS w badaniach warunków termicznych miasta (na przykładzie aglomeracji krakowskiej) (Application of LANDSAT satellite data and GIS techniques for estimation of thermal conditions in urban area (using an example of Kraków agglomeration)). Prace Geograficzne 122: 81-98. https://ruj.uj.edu.pl/xmlui/handle/item/147548 (accessed 3 April 2025).
Wallenberg N., Rayner D., Lindberg F., Thorsson S., 2023. Present and future heat stress of preschoolers in five Swedish cities. Climate Risk Management 40: 100508. DOI: https://doi.org/10.1016/j.crm.2023.100508
WHO, 2008. Heat-health action plans. Guidance. WHO Regional Office for Europe, Denmark.
Wibig J., 2021. Hot days and heat waves in Poland in the period 1951-2019 and the circulation factors favoring the most extreme of them. Atmosphere 12: 340. DOI: https://doi.org/10.3390/atmos12030340
Wu P.C., Tsai C.L., Wu H.L., Yang Y.H., Kuo H.K., 2013. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology 120: 1080-1085. DOI: https://doi.org/10.1016/j.ophtha.2012.11.009
Xiong S., Sankaridurg P., Naduvilath T., Zang J., Zou H., Zhu J., Lv M., He X., Xu X., 2017. Time spent in outdoor activities in relation to myopia prevention and control: A meta-analysis and systematic review. Acta Ophthalmologica 95: 551-566. DOI: https://doi.org/10.1111/aos.13403
Zhan W., Chen Y., Zhou J., Wang J., Liu W., Voogt J., Zhu X., Quan J., Li J., 2013. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sensing of Environment 131: 119-139. DOI: https://doi.org/10.1016/j.rse.2012.12.014
Zhang A., Bokel R., van den Dobbelsteen A., Sun Y., Huang Q., Zhang Q., 2017. An integrated school and schoolyard design method for summer thermal comfort and energy efficiency in Northern China. Building and Environment 124: 369-387. DOI: https://doi.org/10.1016/j.buildenv.2017.08.024
Zhao Y., Zhao K., Zhang X., Zhang Y., Du Z., 2024. Assessment of combined passive cooling strategies for improving outdoor thermal comfort in a school courtyard. Building and Environment 252: 111247. DOI: https://doi.org/10.1016/j.buildenv.2024.111247
Zhou W., Huang G., Pickett S.T.A., Wang J., Cadenasso M.L., McPhearson T., Grove J.M., Wang J., 2021. Urban tree canopy has greater cooling effects in socially vulnerable communities in the US. One Earth 4: 1764-1775. DOI: https://doi.org/10.1016/j.oneear.2021.11.010
Zhou D., Xiao J., Bonafoni S., Berger C., Deilami K., Zhou Y., Frolking S., Yao R., Qiao Z., Sobrino J.A., 2019. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing 11: 48. DOI: https://doi.org/10.3390/rs11010048
Zwierzchowska I., Fagiewicz K., Poniży L., Lupa P., Mizgajski A., 2019. Introducing nature-based solutions into urban policy – Facts and gaps. Case study of Poznań. Land Use Policy 85: 161-175. DOI: https://doi.org/10.1016/j.landusepol.2019.03.025
License
Copyright (c) 2025 Piotr Lupa, Iwona Zwierzchowska

This work is licensed under a Creative Commons Attribution 4.0 International License.
