Abstract
Saturated hydraulic conductivity (Ks) is a fundamental soil property influencing water flow and quality. While previous research primarily focused on small-scale spatial variability, this study assesses Ks distribution across a larger area within an irrigated perimeter. We aimed to determine the spatial distribution of Ks in the Beni Moussa irrigated perimeter (Morocco) using field measurements combined with geostatistical analysis. Seventy soil samples were collected from different soil units, and Ks was measured in situ using a single-ring infiltrometer. Samples were analysed for physicochemical properties, including texture, organic carbon (OC), organic matter (OM), porosity, bulk density (BD), CaCO3, and water content (WC). Statistical analysis examined correlations between these parameters. Spatial variability was assessed using semi-variograms, and spatial distribution was modelled via kriging interpolation. Results reveal significant spatial heterogeneity, with Ks values ranging from 32 to 680 mm ∙ h−¹. High Ks values were associated with sandy textures, while lower values correlated with clay-rich soils. Additionally, electrical conductivity (EC) and pH influenced infiltration capacity, highlighting soil physicochemical impacts on water movement. Spatial distribution showed higher Ks values (>300 mm ∙ h−¹) in the northeastern part and lower values in the southwest, corresponding to sand content. Sandy soils promote excessive drainage, limiting crop growth. These findings underscore the importance of optimising water management in semi-arid agricultural regions where resource conservation is critical due to climate change and human activities.
References
AFNOR [Association Française de Normalisation], 1996. Qualité des sols. Recueil de normes françaises.
Alekseev I., Abakumov E., 2020. Assessment of soil electrical properties in selected agricultural soils of Puchuncaví, Central Chile. Agriculture 66(2): 67-73. DOI: https://doi.org/10.2478/agri-2020-0007
Alemi M.H., Shahriari M.R., Nielsen D.R., 1988. Kriging and cokriging of soil water properties. Soil Technology 1(2): 117-132. DOI: https://doi.org/10.1016/S0933-3630(88)80014-X
Alongo S., Kombele F., 2009. Évolution de la densité apparente et du rapport c/n du sol sous les variétés exotiques et locale de manioc dans les conditions naturelles de Kisangani (RD Congo). Annales de l’Institut Facultaires des sciences agronomiques de Yangambi 1: 197-214.
Arrington K.E., Ventura S.J., Norman J.M., 2013. Predicting saturated hydraulic conductivity for estimating maximum soil infiltration rates. Soil Science Society of America Journal 77(3): 748‑758. DOI: https://doi.org/10.2136/sssaj2012.0288
Barakat A., Hilali A., Baghdadi M.E., Touhami F., 2017. Landfill site selection with GIS-based multi-criteria evaluation technique. A case study in Béni Mellal-Khouribga Region, Morocco. Environmental Earth Sciences 76(12): 413. DOI: https://doi.org/10.1007/s12665-017-6757-8
Barakat A., Rafai M., Mosaid H., Islam M.S., Saeed S., 2023. Mapping of water-induced soil erosion using machine learning models: a case study of Oum Er Rbia Basin (Morocco). Earth Systems and Environment 7(1): 151-170. DOI: https://doi.org/10.1007/s41748-022-00317-x
Becher M., Pakuła K., Czapliński K., 2020. Soil organic matter quality in soils with different levels of manure fertilisation. Environmental Protection and Natural Resources 31(2): 17-23. DOI: https://doi.org/10.2478/oszn-2020-0007
Bekkaoui F., Sadiki M., Alami I.T., 2024. Contribution de la recherche agricole pour une meilleure résilience de l’agriculture marocaine. African and Mediterranean Agricultural Journal-Al Awamia 143,1-8.
Biswas A., Si B.C., 2013. Model averaging for semivariogram model parameters. Advances in Agrophysical Research 4: 81‑96. DOI: https://doi.org/10.5772/52339
Bouma J., 1989. Using soil survey data for quantitative land evaluation. Advances in Soil Science 9: 177-213. DOI: https://doi.org/10.1007/978-1-4612-3532-3_4
Braud W., 2003. Distant mental influence: Its contributions to science, healing, and human interactions. Hampton Roads Publishing.
Castellini M., Di Prima S., Moret-Fernández D., Lassabatere L., 2021. Rapid and accurate measurement methods for determining soil hydraulic properties: A review. Journal of Hydrology and Hydromechanics 69(2): 121‑139. DOI: https://doi.org/10.2478/johh-2021-0002
Corwin D.L., Lesch S.M., 2005. Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture 46(1-3): 11-43. DOI: https://doi.org/10.1016/j.compag.2004.10.005
Dexter A.R., 2004. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120(3-4): 201-214. DOI: https://doi.org/10.1016/j.geoderma.2003.09.004
El Baghdadi M., 2022. Caracterisation Physico-chimique et impact des pratiques agricoles sur la qualité des sols de Beni Moussa (Plaine de Tadla Maroc). Online: https://toubkal.imist.ma/handle/123456789/25726.
El Hammoumi N., Sinan M., Lekhlif B., Lakhdar M., 2013. Use of multivariate statistical and geographic information system (GIS)-based approach to evaluate ground water quality in the irrigated plain of Tadla (Morocco). International Journal of Water Resources and Environmental Engineering 5(2): 77‑93.
El Hamzaoui E.H., El Baghdadi M., Hilali A., 2021. GIS and AHP multi-criteria analysis method for assessing the suitability of soils adopted in agricultural activities in irrigated perimeter, Tadla plain (Morocco). Journal of Sedimentary Environments 6(2): 319-333. DOI: https://doi.org/10.1007/s43217-020-00048-x
El Hamzaoui E.H., El Baghdadi M., Oumenskou H., Aadraoui M., Hilali A., 2020. Spatial repartition and contamination assessment of heavy metal in agricultural soils of Beni-Moussa, Tadla plain (Morocco). Modeling Earth Systems and Environment 6(3): 1387-1406. DOI: https://doi.org/10.1007/s40808-020-00756-3
Ennaji W., Barakat A., El Baghdadi M., Rais J., 2020. Heavy metal contamination in agricultural soil and ecological risk assessment in the northeast area of Tadla plain, Morocco. Journal of Sedimentary Environments 5(3): 307-320. DOI: https://doi.org/10.1007/s43217-020-00020-9
Gao H., Sabo J.L., Chen X., Liu Z., Yang Z., Ren Z., Liu M., 2018. Landscape heterogeneity and hydrological processes: A review of landscape-based hydrological models. Landscape Ecology 33(9): 1461‑1480. DOI: https://doi.org/10.1007/s10980-018-0690-4
García-Gutiérrez C., Pachepsky Y., Martín M.Á, 2018. Technical note: Saturated hydraulic conductivity and textural heterogeneity of soils. Hydrology and Earth System Sciences 22(7): 3923-3932. DOI: https://doi.org/10.5194/hess-22-3923-2018
Ghorbani A., Mohammadi Moghaddam S., Hashemi Majd K., Dadgar D., 2018. Spatial variation analysis of soil properties using spatial statistics: A case study in the region of Sabalan mountain, Iran. Eco.mont Journal on Protected Mountain Areas Research and Management 1(1): 70-80. DOI: https://doi.org/10.1553/eco.mont-10-1s70
Goovaerts P., 1997. Geostatistics for natural resources evaluation. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780195115383.001.0001
Gumiere S.J., Lafond J.A., Hallema D.W., Périard Y., Caron J., Gallichand J., 2014. Mapping soil hydraulic conductivity and matric potential for water management of cranberry: Characterisation and spatial interpolation methods. Biosystems Engineering 128: 29‑40. DOI: https://doi.org/10.1016/j.biosystemseng.2014.09.002
Guo T., Zhang S., Song C., Zhao R., Jia L., Wei Z., 2024. Response of phosphorus fractions transformation and microbial community to carbon-to-phosphorus ratios during sludge composting. Journal of Environmental Management 360, 121145. DOI: https://doi.org/10.1016/j.jenvman.2024.121145
Hilali A., El Baghdadi M., Barakat A., Ennaji W., El Hamzaoui E.H., 2020. Contribution of GIS techniques and pollution indices in the assessment of metal pollution in agricultural soils irrigated with wastewater: case of the Day River, Beni Mellal (Morocco). Euro-Mediterranean Journal for Environmental Integration 3: 1-19. DOI: https://doi.org/10.1007/s41207-020-00186-8
Hilali A., El Baghdadi M., El Hamzaoui E.H., 2021. GIS and AHP multi-criteria analysis methods for the quality assessment of agricultural soils irrigated with wastewater: case of the Day River, Beni Mellal (Morocco). Arabian Journal of Geosciences 14, 2388: 1-16. DOI: https://doi.org/10.1007/s12517-021-08654-3
Hillel D., 2003. Introduction to environmental soil physics. Academic Press.
Hssaisoune M., Bouchaou L., Sifeddine A., Bouimetarhan I., Chehbouni A., 2020. Moroccan groundwater resources and evolution with global climate changes. Geosciences 10(2): 81. DOI: https://doi.org/10.3390/geosciences10020081
Huang M., Zhang Z., Zhai Y., Lu P., Zhu C., 2019. Effect of straw biochar on soil properties and wheat production under saline water irrigation. Agronomy 9(8): 457. DOI: https://doi.org/10.3390/agronomy9080457
Ibrahim A., Wayayok A., Shafri H.Z.M., Toridi N.M., 2024. Remote sensing technologies for modelling groundwater storage dynamics: Comprehensive review. Journal of Hydrology X 23: 100175. DOI: https://doi.org/10.1016/j.hydroa.2024.100175
Kifanyi G.E., Ndambuki J.M., Odai S.N., Gyamfi C., 2019. Quantitative management of groundwater resources in regional aquifers under uncertainty: A retrospective optimization approach. Groundwater for Sustainable Development 8: 530‑540. DOI: https://doi.org/10.1016/j.gsd.2019.02.005
Klute A., Page A.L., 1986. Methods of soil analysis. Part 1. Physical and mineralogical methods; Part 2. Chemical and microbiological properties. American Society of Agronomy, Inc. Online: https://worldveg.tind.io/record/6790/. DOI: https://doi.org/10.2136/sssabookser5.1.2ed
Lal R., 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123(1-2): 1-22. DOI: https://doi.org/10.1016/j.geoderma.2004.01.032
Lal R., 2006. Enhancing crop yields in the developing world through soil organic carbon sequestration. Advances in Agronomy 88: 35-45.
Lambin E.F., Geis H.J., Lepers E., 2003. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources 28(1): 205-241. DOI: https://doi.org/10.1146/annurev.energy.28.050302.105459
Lim H., Yang H., Chun K.W., Choi H.T., 2020. Development of Pedo-Transfer Functions for the Saturated Hydraulic Conductivity of Forest Soil in South Korea Considering Forest Stand and Site Characteristics. Water 12, 2217. DOI: https://doi.org/10.3390/w12082217
Mallants D., Mohanty B.P., Vervoort A., Feyen J., 1997. Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil Technology 10(2): 115-131. DOI: https://doi.org/10.1016/S0933-3630(96)00093-1
Mishra P., Pandey C.M., Singh U., Keshri A., Sabaretnam M., 2019. Selection of appropriate statistical methods for data analysis. Annals of Cardiac Anaesthesia 22(3): 297‑301. DOI: https://doi.org/10.4103/aca.ACA_248_18
Mohanty B.P., Ankeny M.D., Horton R., Kanwar R.S., 1994. Spatial analysis of hydraulic conductivity measured using disc infiltrometers. Water Resources Research 30(9): 2489-2498. DOI: https://doi.org/10.1029/94WR01052
Mohanty B.P., Skaggs T.H., Famiglietti J.S., 2000. Analysis and mapping of field-scale soil moisture variability using high-resolution, ground-based data during the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Water Resources Research 36(4): 1023-1031. DOI: https://doi.org/10.1029/1999WR900360
Moosavi A.A., Sepaskhah A.R., 2012. Spatial variability of physico-chemical properties and hydraulic characteristics of a gravelly calcareous soil. Archives of Agronomy and Soil Science 58(6): 631-656. DOI: https://doi.org/10.1080/03650340.2010.533659
Mouaddine A., Barakat A., Hajaj S., Mosaid H., Bouzekraoui H., Bni Z., Hilali A., 2025. Predicting and mapping soil saturated hydraulic conductivity in the Beni Moussa irrigated perimeter (Tadla Plain, Morocco) using Random Forest machine learning model. Modeling Earth Systems and Environment 11(2): 82. DOI: https://doi.org/10.1007/s40808-024-02210-0
Oumenskou H., El Baghdadi M., Barakat A., Aquit M., Ennaji W., Karroum L.A., Aadraoui M., 2019. Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter, Tadla plain, Morocco. Geology, Ecology, and Landscapes 3(2): 83-94. DOI: https://doi.org/10.1080/24749508.2018.1504272
Porchet M., Laferrere H., 1935. Détermination des caractéristiques hydrodynamiques des sols en place. Mémoire et notes techniques, Vol. 64. Annales du Ministère de l’Agriculture, France: 5‑68.
Rogers J.S., Klute A., 1971. The hydraulic conductivity-water content relationship during nonsteady flow through a sand column. Soil Science Society of America Journal 35(5): 695-700. DOI: https://doi.org/10.2136/sssaj1971.03615995003500050021x
Saidi D., Le Bissonnais Y., Duval O., Daoud Y., Tessier D., 2008. Estimation et signification de la capacité d’échange cationique des sols salés du Cheliff (Algérie). Etude et Gestion des sols 15(4): 241‑253.
Saxton K.E., Rawls W.J., 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal 70(5): 1569-1578. DOI: https://doi.org/10.2136/sssaj2005.0117
Six J., Elliott E.T., Paustian K., Doran J.W., 2000. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal 64(2): 1367-1376.
Sobieraj J.A., Elsenbeer H., Cameron G., 2004. Scale dependency in spatial patterns of saturated hydraulic conductivity. Catena 55(1): 49-77. DOI: https://doi.org/10.1016/S0341-8162(03)00090-0
Takác J., 2013. Assessment of drought in agricultural regions of Slovakia using soil water dynamics simulation. Agriculture 59(2): 74-87. DOI: https://doi.org/10.2478/agri-2013-0007
Tan K.H., 2010. Principles of soil chemistry. Boca Raton, CRC Press, 390.
Weil R.R., Brady N.C., Weil R.R., 2017. The nature and properties of soils. Pearson.
License
Copyright (c) 2026 Atika Mouaddine, Hicham Bouzekraoui, Ahmed Barakat, El Hamzaoui El Hassania, Soufiane Hajaj, Zakaria Bni, Maria El-Harram

This work is licensed under a Creative Commons Attribution 4.0 International License.
