Abstract
This paper aimed to investigate the extent of trace metal (TM) contamination of soils in areas adjacent to the bunkers of the Molotov Line in Poland and to assess reclamation activities on the extent of TM contamination of soils. The Molotov Line is a zone of Soviet fortifications constructed in 1940–41. Surface (0–20 cm) and subsurface (20–40 cm) soil samples were collected at four transects and distances from the bunkers. TMs (Cd, Cu, Mn, Pb, Zn, Ni, Cr and Bi), pH, texture, TOC, HA, base exchange capacity (BEC) and effective cation exchange capacity (ECEC) were determined in the investigated soils. Several indicators of contamination were used to analyse the degree of contamination: Igeo, pollution load index (PLI), pollution index (PI), CD, RI and top-bottom (TB) index. The conducted research has revealed that soils subjected to military pressure exhibit different properties from natural soils. The TM content in the 0–20 cm soil layers was higher than in the subsurface layers and several times higher than the geochemical background. This indicates that despite remediation efforts (ploughing and afforestation), there exists a clear geochemical record of military activities along the Molotov Line. Thanks to the contamination indices used in this study, it was found that soils affected by the past wartime activities may pose a real threat to health. The regularities presented in this study can provide a basis for action regarding the direction of remediation activities for areas with sensitive uses, such as military training grounds. The results presented here allow us to conclude that despite the remediation activities undertaken, there is a clear geochemical record of military activities on the Molotov Line.
Funding
The research was financed by the statutory research fund of the Institute of Earth and Environmental Sciences at Maria Curie-Skłodowska University in Lublin, Poland.
References
Barker A.J., Clausen J.L., Douglas T.A., Bednar A.J., Griggs C.S., Martin W.A., 2021. Environmental impact of metals resulting from military training activities: A review. Chemosphere 265: 129110. DOI: https://doi.org/10.1016/j.chemosphere.2020.129110
Bausinger T., Bonnaire E., Preuss J., 2007. Exposure assessment of a burning ground for chemical ammunition on the Great War battlefields of Verdun. Science of the Total Environment 382: 259-271. DOI: https://doi.org/10.1016/j.scitotenv.2007.04.029
Baxter S., 2006. Guidelines for soil description. Rome: Food and Agriculture Organization of the United Nations. Experimental Agriculture 43.2.
Bereza T., Chmielowiec P., 2000. Krótka historia i przewodnik po zapomnianych fortyfikacjach na Ziemi Przemyskiej i Roztoczu. Regionalny Ośrodek Kultury, Edukacji i Nauki w Przemyślu, Przemyślu.
Bereza T., Chmielowiec P., Grechuta J., 2002. W cieniu „Linii Mołotowa”. Ochrona granicy ZSRR z III Rzeszą między Wisznią a Sołokiją w latach 1939-1941. Instytut Pamięci Narodowej, Rzeszów.
Broomandi P., Guney M., Kim J.R., Karaca F., 2020. Soil contamination in areas impacted by military activities: A critical review. Sustainability 12(21): 9002. DOI: https://doi.org/10.3390/su12219002
Celej P., 2021. Jak rozminowywano lasy po II wojnie światowej. Online: https://www.lasy.gov.pl/pl/informacje/aktualnosci/jak-rozminowywano-lasy-po-ii-wojnie-swiatowej (accessed 15 November 2023).
Charles S., Geusens N., Vergalito E., Nys B., 2020. Interpol review of gunshot residue 2016-2019. Forensic Science International: Synergy 2: 416-428. DOI: https://doi.org/10.1016/j.fsisyn.2020.01.011
Charzyński P., Plak A., Hanaka A., 2017. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors. Environmental Science and Pollution Research International 24: 4801-4811. DOI: https://doi.org/10.1007/s11356-016-8209-5
Clausen J.L., Korte N., 2009. Environmental fate of tungsten from military use. Science of the Total Environment 407(8): 2887-2893. DOI: https://doi.org/10.1016/j.scitotenv.2009.01.029
Czarnowska K., 1996. Total trace metals content of bedrock as geochemical background of soils. Soil Science Annual 47: 43-50.
Denton G.R.W., Emborski C.A., Hachero A.A.B., Masga R.S., Starmer J.A., 2016. Impact of WWII dumpsites on Saipan (CNMI): Heavy metal status of soils and sediments. Environmental Science and Pollution Research 23: 11339-11348. DOI: https://doi.org/10.1007/s11356-016-6603-7
Etim E.U., Onianwa P.C., 2012. Lead contamination of soil in the vicinity of a military shooting range in Ibadan, Nigeria. Toxicological & Environmental Chemistry 94(5): 895-905. DOI: https://doi.org/10.1080/02772248.2012.678997
Gębka K., Bełdowski J., Bełdowska M., 2016. The impact of military activities on the concentration of mercury in soils of military training grounds and marine sediments. Environmental Science and Pollution Research International 23(22): 23103-23113. DOI: https://doi.org/10.1007/s11356-016-7436-0
Gillies J.A., Kuhns H., Engelbrecht J.P., Uppapalli S., Etyemezian V., Nikolich G., 2007. Particulate emissions from U.S. Department of Defense artillery backblast testing. Journal of the Air & Waste Management Association (1995) 57(5): 551-560. DOI: https://doi.org/10.3155/1047-3289.57.5.551
Gong Q., Deng J., Xiang Y., Wang Q., Yang L., 2008. Calculating pollution indices by trace metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences 19: 230-241. DOI: https://doi.org/10.1016/S1002-0705(08)60042-4
Grechuta J., 2000. Grupa Badawcza Kriepost. Fortyfikacje Linii Mołotowa 1940-41. Fortyfikacje Rawskiego Rejonu Umocnionego – Linii Mołotowa, na południowym Roztoczu. Online: https://kriepost.org/index.php?option=com_content&view=article&id=25:fortyfikacje-rawskiego-rejonu-umocnionego-linii-mootowa-na-poudniowym-roztoczu&catid=11&Itemid=5 (accessed 13 November 2023).
Greičiūtė K., Juozulynas A., Šurkienė G., Valeikienė V., 2007. Research on soil disturbance and pollution with heavy metals in military grounds. Geologija 57: 14-20.
Håkanson L., 1980. An ecological risk index for aquatic. Pollution control: A sedimentological approach. Water Research 14: 975-1001. DOI: https://doi.org/10.1016/0043-1354(80)90143-8
Hong S.T., Hyun J.H., 2014. The comparison of the relationship between the gunfire shot and its resulting heavy metal pollution rate. Journal of Soil and Groundwater Environment 19(6): 1-5. DOI: https://doi.org/10.7857/JSGE.2014.19.6.001
Islam M.N., Nguyen X.P., Jung H.Y., Park J.H., 2016. Chemical speciation and quantitative evaluation of heavy metal pollution hazards in two army shooting range backstop soils. Bulletin of Environmental Contamination and Toxicology 96(2): 179-185. DOI: https://doi.org/10.1007/s00128-015-1689-z
IUSS Working Group WRB, 2022. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps, 4th Edn. International Union of Soil Sciences (IUSS), Vienna, Austria.
Kabała C., Charzyński P., Chodorowski J., Drewnik M., Glina B., Greinert A., Hulisz P., Jankowski M., Jonczak J., Łabaz B., Łachacz A., Marzec M., Mendyk Ł, Musiał P., Musielok Ł, Smreczak B., Sowiński P., Świtoniak M., Uzarowicz Ł, Waroszewski J., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2): 71-97. DOI: https://doi.org/10.2478/ssa-2019-0009
Kabata-Pendias A., 2010. Trace elements in soils and plants, 4th Edn. CRC Press. DOI: https://doi.org/10.1201/b10158
Kis I.M., Karaica B., Medunic G., Romic M., Sabaric J., Balen D., Sostarko K., 2016. Soil, bark and leaf trace metal loads related to the war legacy (The Prasnik Rainforest, Croatia). Rudarsko-geološko-naftni zbornik 31: 13-28. DOI: https://doi.org/10.17794/rgn.2016.2.2
Knechtenhofer L.A., Xifra I.O., Scheinost A.C., Flühler H., Kretzschmar R., 2003. Fate of trace metals in a strongly acidic shooting-range soil: Small-scale metal distribution and its relation to preferential water flow. Journal of Plant Nutrition and Soil Science 166(1): 84-92. DOI: https://doi.org/10.1002/jpln.200390017
Kokorîte I., Kïaviòð M., Ðore J., Purmalis O., Zuèika A., 2008. Soil pollution with trace elements in territories of military grounds in Latvia. Proceedings of the Latvian Academy of Sciences. Section B 62(1/2): 27-33. DOI: https://doi.org/10.2478/v10046-008-0010-5
Laporte-Saumure M., Martel R., Mercier G., 2011. Characterization and metal availability of copper, lead, antimony and zinc contamination at four Canadian small arms firing ranges. Environmental Technology 32(7): 767-781. DOI: https://doi.org/10.1080/09593330.2010.512298
Lawrence M.J., Stemberger H.L., Zolderdo A.J., Struthers D.P., Cooke S.J., 2015. The effects of modern war and military activities on biodiversity and the environment. Environmental Reviews 23(4): 443-460. DOI: https://doi.org/10.1139/er-2015-0039
Magnuski K., Jaszcza R., 2008. Urządzanie lasu w Polsce po drugiej wojnie światowej w świetle źródłowych publikacji Sylwana. Część I. Okresy rozwoju urządzania lasu. Sylwan 6.
Mander Ü, Kull A., Frey J., 2004. Residual cadmium and lead pollution at a former Soviet military airfield in Tartu, Estonia. In: Biogeochemical investigations of terrestrial, freshwater, and wetland ecosystems across the globe. Springer, Dordrecht: 591-606. DOI: https://doi.org/10.1007/978-94-007-0952-2_40
Mazurek R., Kowalska J., Gąsiorek M., Zadrożny P., Józefowska A., Zaleski T., Kępka W., Tymczuk M., Orłowska K., 2017. Assessment of trace metals contamination in surface horizons of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 168: 839-850. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.126
Meerschman E., Cockx L., Islam M.M., Meeuws F., Van Meirvenne M., 2011. Geostatistical assessment of the impact of World War I on the spatial occurrence of soil trace metals. Ambio 40: 417-424. DOI: https://doi.org/10.1007/s13280-010-0104-6
Migaszewski Z.M., Gałuszka A., 2007. Podstawy geochemii środowiska. Wydawnictwa Naukowo-Techniczne.
Muller G., 1969. Index of geo-accumulation in sediments of the Rhine River. Geojournal 2: 108-118.
Petrushka K., Petrushka I., Yukhman Y., 2023. Assessment of the impact of military actions on the soil cover at the explosion site by the Nemerov method and the Pearson coefficient: Case study of the city of Lviv. Journal of Ecological Engineering 24(10): 77-85. DOI: https://doi.org/10.12911/22998993/170078
Pichtel J., 2012. Distribution and fate of military explosives and propellants in soil: A review. Applied and Environmental Soil Science 2012(1): 617236. DOI: https://doi.org/10.1155/2012/617236
Plak A., Telecka M., Charzyński P., 2024. Evaluation of hazardous element accumulation in urban soils of Cracow, Lublin and Toruń (Poland): Pollution and ecological risk indices. Journal of Soils and Sediments 25: 510-532. DOI: https://doi.org/10.1007/s11368-024-03864-0
Polakowski C., Makó A., Sochan A., Ryżak M., Zaleski T., Beczek M., Bieganowski A., 2023. Recommendations for soil sample preparation, pretreatment, and data conversion for texture classification in laser diffraction particle size analysis. Geoderma 430: 116358. DOI: https://doi.org/10.1016/j.geoderma.2023.116358
Rodriguez-Seijo A., Alfaya C.M., Andrade-Couce M., Alonso Vega F., 2016. Copper, chromium, nickel, lead and zinc levels and pollution degree in firing range soils. Land Degradation & Development 27: 1721-1730. DOI: https://doi.org/10.1002/ldr.2497
Rodríguez-Seijo A., Fernández-Calviño D., Arias-Estévez M., Arenas-Lago D., 2024. Effects of military training, warfare and civilian ammunition debris on the soil organisms: An ecotoxicological review. Biology and Fertility of Soils 60: 813-844. DOI: https://doi.org/10.1007/s00374-024-01835-8
Ryu H., Han J., Jung J.W., Bae B., Nam K., 2007. Human health risk assessment of explosives and trace metals at a military gunnery range. Environmental Geochemistry and Health 29: 259-269. DOI: https://doi.org/10.1007/s10653-007-9101-5
Ryżak M., Bieganowski A., 2011. Methodological aspects of determining soil particle-size distribution using the laser diffraction method. Journal of Plant Nutrition and Soil Science 174: 624-633. DOI: https://doi.org/10.1002/jpln.201000255
Sanderson P., Naidu R., Bolan N., Bowman M., Mclure S., 2012. Effect of soil type on distribution and bioaccessibility of metal contaminants in shooting range soils. Science of the Total Environment 438: 452-462. DOI: https://doi.org/10.1016/j.scitotenv.2012.08.014
Shi X., Wang J., 2013. Comparison of different methods for assessing heavy metal contamination in street dust of Xianyang City, NW China. Environmental Earth Sciences 68: 2409-2415. DOI: https://doi.org/10.1007/s12665-012-1925-3
Short N., 2008. The Stalin and Molotov Lines. Soviet western defences 1928-41. Osprey Publishing, Oxford.
Skalny A., Aschner M., Bobrovnitsky I.P., Chen P., Tsatsakis A., Paoliello M.M.B., Djordevic A.B., Tinkov A.A., 2021. Environmental and health hazards of military metal pollution. Environmental Research 201: 111568. DOI: https://doi.org/10.1016/j.envres.2021.111568
Skwaryło-Bednarz B., 2007. Zawartość Pb, Cu, Zn w glebach otuliny Roztoczańskiego Parku Narodowego i terenów produkcyjnych do nich przyległych. Acta Agrophysica 10(1): 199-205.
Skwaryło-Bednarz B., Kwapisz M., Onuch J., Krzepiłko A., 2014. Assessment of the content of trace metals and catalase activity in soils located in protected zone of the Roztocze National Park. Acta Agrophysica 21(3): 351-359.
Sladkova A., Szakova J., Havelcova M., Najmanova J., Tlustos P., 2015. The contents of selected risk elements and organic pollutants in soil and vegetation within a former military area. Soil and Sediment Contamination: An International Journal 24: 325-342. DOI: https://doi.org/10.1080/15320383.2015.955605
Solon J., Borzyszkowski J., Bidłasik M., Richling A., Badora K., Balon J., Brzezińska-Wójcik T., Chabudziński Ł, Dobrowolski R., Grzegorczyk I., Jodłowski M., Kistowski M., Kot R., Krąż P., Lechnio J., Macias A., Majchrowska A., Malinowska E., Migoń P., Myga-Piątek U., Nita J., Papińska E., Rodzik J., Strzyż M., Terpiłowski S., Ziaja W., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2): 143-170. DOI: https://doi.org/10.7163/GPol.0115
Splodytel A., Holubtsov O., Chumachenko S., Sorokina L., 2023. The impact of Russia’s war against Ukraine on the state of the country’s soil: Analysis results. Ecoaction – Centre for Environmental Initiatives.
Systematyka gleb Polski, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wroclaw-Warsaw.
Thouin H., Le Forestier L., Gautret P., Hube D., Laperche V., Dupraz S., Battaglia-Brunet F., 2016. Characterization and mobility of arsenic and trace metals in soils polluted by the destruction of arsenic-containing shells from the Great War. Science of the Total Environment 550: 658-669. DOI: https://doi.org/10.1016/j.scitotenv.2016.01.111
Tomic N.T., Smiljanic S., Jovic M., Gligoric M., Povrenovic D., Dosic A., 2018. Examining the effects of the destroying ammunition, mines, and explosive devices on the presence of trace metals in soil of open detonation pit: Part 1-pseudo-total concentration. Water, Air, & Soil Pollution 229: 301. DOI: https://doi.org/10.1007/s11270-018-3957-0
Uziak S., Melke J., Klimowicz Z., 2004. Akumulacja i migracja metali ciężkich w glebach regionów fizjograficznych Polski Wschodniej. Annales Universitatis Mariae Curie-Skłodowska Lublin-Polonia Section B 59(10): 161-180.
van Meirvenne M., Meklit T., Verstraete S., De Boever M., Tack F., 2008. Could shelling in the First World War have increased copper concentrations in the soil around Ypres? European Journal of Soil Science 59: 372-379. DOI: https://doi.org/10.1111/j.1365-2389.2007.01014.x
van Reeuwijk L.P., 2002. Procedures for soil analysis. Report No. 9. ISRIC, FAO, Rome.
Weng H.X., Zhang X.M., Chen X.H., Wu N.Y., 2003. The stability of the relative content ratios of Cu, Pb and Zn in soils and sediments. Environmental Geology 45: 79-85. DOI: https://doi.org/10.1007/s00254-003-0859-1
Baza Danych Obiektów Topograficznych (BDOT10k). Online: https://mapy.geoportal.gov.pl/wss/service/WMTS/guest/wmts/BDOT10k (accessed 13 December 2023).
Mapa Szczegółowa Polski 1:100000. 1934. The Military Geographical Institute.
Mapa Taktyczna Polski 1:100 000. 1955. The Military Geographical Institute (General Staff, Post-WW2).
Zagury G.J., Bello J.A.R., Guney M., 2016. Valorization of a treated soil via amendments: Fractionation and oral bioaccessibility of Cu, Ni, Pb, and Zn. Environmental Monitoring and Assessment 188: 1-11. DOI: https://doi.org/10.1007/s10661-016-5223-5
Zgłobicki W., 2008. Geochemiczny zapis działalności człowieka w osadach stokowych i rzecznych. Wydawnictwo UMCS, Lublin: 240.
Zgłobicki W., 2013. Impact of microtopography on the geochemistry of soils within archaeological sites in SE Poland. Environmental Earth Sciences 70: 3085-3092. DOI: https://doi.org/10.1007/s12665-013-2368-1
Zgłobicki W., Telecka M., Hałas P., Bis M., 2025. Impact of traffic and other sources on heavy metal pollution of urban soils (Lublin, Poland). Environmental Nanotechnology, Monitoring & Management 23: 101058. DOI: https://doi.org/10.1016/j.enmm.2025.101058
Zhiyuan W., Dengfeng W., Huiping Z., Zhiping Q., 2011. Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index. Procedia Environmental Sciences 10: 1946-1952. DOI: https://doi.org/10.1016/j.proenv.2011.09.305
License
Copyright (c) 2025 Andrzej Plak, Grzegorz Gajek, Małgorzata Telecka, Paulina Hałas, Małgorzata Bis, Tomasz Szafran

This work is licensed under a Creative Commons Attribution 4.0 International License.
