Identification of remnants of World War II air campaign for spatial management using geophysical methods (Koźle Basin, Southern Poland)
Journal cover Quaestiones Geographicae, title Online First
PDF

Keywords

unexploded bombs
World War II
proton magnetometry
conductometry
ground penetration radar profiling

How to Cite

Waga, J. M., Sendobry, K., Jochymczyk, K., Pierwioła, J., Grabiec, M., Szypuła, B., … Fajer, M. (2025). Identification of remnants of World War II air campaign for spatial management using geophysical methods (Koźle Basin, Southern Poland). Quaestiones Geographicae. https://doi.org/10.14746/quageo-2026-0004

Abstract

Undiscovered military explosives pose a social and environmental burden in every war-affected country. Until recently, the methods and techniques for detecting such ordnance were limited, leaving areas vulnerable to possible fatal accidents and consecutive environmental pollution. To avoid such consequences, effective detection of unexploded ordnance (UXO) is necessary, especially in areas with intensive economic activity. This study aims to develop a viable solution for UXO detection by utilizing a range of currently available methods in various environmental conditions. Such conditions were met in the study area of the Koźle Basin (Poland, Central Europe), which was affected by massive Allied strategic bombing in 1944. It is estimated that the area contains 4,000 to 6,000 pieces of UXO. In addition, the study area has diverse environmental conditions, including dry, wet, and swampy areas, as well as various types of land cover. During the two years, the respective study sites were explored using ground penetrating radar, proton magnetometry, magnetic anomaly detection, electrical conductometry, and electrical resistivity tomography. Based on the field surveys and data analysis, we conclude that the use of conductivity meters that can be easily operated on site (especially the CMD-Explorer, which indicates the depth range of potential UXBs in addition to their location on the map) yielded very good results. The ground penetrometer radar (GPR) and the electrical resistivity method were found to be more demanding at the stage of the measurement preparation phase, both proved to be effective. The ferromagnetic characteristics of the finds were confirmed with a proton magnetometer, which was also used for preliminary field prospecting.

https://doi.org/10.14746/quageo-2026-0004
PDF

Funding

The research activities and publication co-financed by the funds granted under the “Inicjatywa Doskonałości Badawczej” in competition “Swoboda Badań III” at the University of Silesia in Katowice.

References

Arbeitskreis …, 2018. Arbeitskreis Arbeitshilfen Kampfmittelräumung. Baufachliche Richtlinien Kampfmittelräumung Arbeitshilfen zur Erkundung, Planung und Räumung von Kampfmitteln auf Liegenschaften des Bundes. Bundesministerium des Innern, für Bau und Heimat, Berlin. Bundesministerium der Verteidigung, Bonn. Online: www.bfr-kmr.de/dokumente/BFR_KMR_Stand_September_2018.pdf (accessed May 12, 2025).

Barone P.M., 2019. Bombed Archaeology: Towards a precise identification and a safe management of WWII’s dangerous unexploded bombs. Heritage 2(4): 2704-2711. DOI: https://doi.org/10.3390/heritage2040167

Barrowes B., Prishvin M., Jutras G., Shubitidze F., 2019. High-Frequency Electromagnetic Induction (HFEMI). Sensor Results from IED Constituent Parts. Remote Sensing 11: 2355. DOI: https://doi.org/10.3390/rs11202355

Bartolini L.M., Marchionni L., Molinari C., Parrella A., 2015. Effects of underwater explosion on pipeline integrity. Proceedings of the ASME 34th International Conference on Ocean, Offshore and Arctic Engineering OMAE2015-41092, May 31 – June 5, 2015, St. John’s, Newfoundland, Canada: 1-15. DOI: https://doi.org/10.1115/OMAE2015-41092

Baum C.E. (ed), 1999. Detection and identification of visually obscured targets. Philadelphia: Taylor & Francis.

Bernatek-Jakiel A., Kondracka M., 2022. Detection of soil pipe network by geophysical approach: Electromagnetic induction (EMI) and electrical resistivity tomography (ERT). Land Degradation & Development 33(7): 1002-1014. DOI: https://doi.org/10.1002/ldr.4205

Bomben in Oranienburg, 2016. Bomben in Oranienburg 1945-2016. Online: www.oranienburg-erleben.de/oranienburg/das-ist-oranienburg/800-jahr-feier-2016/open-air-ausstellung/stadtgeschichtliche-ausstellung.html (accessed May 12, 2025).

Borecka A., Ostrowski S., 2017. Analiza obowiązujących przepisów prawnych w zakresie stosowania metod geofizyki inżynierskiej. Przegląd Geologiczny 65(10/2): 678-684.

Brenner S., Zambanini S., Sablatnig R., 2018. Detection of bomb craters in WWII aerial images. Proceedings of the OAGM Workshop: 94-97.

Butler D.K., 2001. Potential fields methods for location of unexploded ordnance. The Leading Edge 20(8): 890-895. DOI: https://doi.org/10.1190/1.1487302

Byholm B., 2017. Remote Sensing of World War II Era Unexploded Bombs Using Object-Based Image Analysisand Multi-Temporal Datasets: A Case Study of the Fort Myers Bombing and Gunnery Range. All Graduate Theses, Dissertations, and Other Capstone Projects, 724.

Byrnes J. (ed), 2009. Unexploded Ordnance Detection and Mitigation. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-1-4020-9253-4

Castellani L. 2019. Il CSP nella valutazione del rischio di rinvenimento di ordigni bellici inesplosi e valutazione del rischio in caso di esplosione. Associazione Nazionale Geometri Per la Protezione Civile. 29 p. Online: collegio.geometri.vr.it/html/uploads/2018/03/convegno-intervento-luca-castellani.pdf (accessed May 12,2025).

Czajkowski-Chołota Z., 2019. Oczyszczanie terenu z przedmiotów wybuchowych i niebezpiecznych. Przegląd Sił Zbrojnych 5: 24-27.

Dane pomiarowe LIDAR, 2022. Surveyor General of Poland (GUGiK), Warszawa. Online: https://mapy.geoportal.gov.pl (accessed October 08, 2024).

Dolejš M., Samek V., Veselý M., Elznicová J., 2020. Detecting World War II bombing relics in markedly transformed landscapes (city of Most, Czechia). Applied Geography 119: 102225. DOI: https://doi.org/10.1016/j.apgeog.2020.102225

Fede G., Bergagnin S., Sassone R., Bondioli F., Suppa M., Motti E., Bombonato L., 2017. Linee guida per la valutazione del rischio da ordigni bellici inesplosi. Linee guida per il CSP relative alla valutazione del rischio di rinvenimento di ordigni bellici inesplosi e valutazione del rischio in caso di esplosione. Online: cni-online.it/Attach/DV12490_ALL.pdf (accessed May 12, 2025).

Fernández J.P., Shubitidze F., Shamatava I., Barrowes B.E., O’Neill K., 2010. Realistic Subsurface Anomaly Discrimination Using Electromagnetic Induction and an SVM Classifier. EURASIP Journal on Advances in Signal Processing 305890. DOI: https://doi.org/10.1155/2010/305890

Foley J. 2008. Demonstration of LiDAR and Orthophotography for Wide Area Assessment at Pueblo Precision Bombing Range #2, Colorado. ESTCP Project MM-0416 and MM-0535. ESTCP Pueblo PBR WAA Final Report. 63 p.

Ielpo D., 2018. Ordine degli Ingegneri della Provincia di Napoli. Seminario tecnico Bonifica dagli ordigni bellici. Napoli 28 maggio 2018. Mistero della Difensa. 10 Reparto Infrastrutture Napoli. 123 p. Online: www.ordineingegnerinapoli.it/news/documenti-2018/Presentazione-Ing.Ielpo.pdf (accessed May 12, 2025).

Jersak J., Sendobry K., 1991. Vistulian deposits in the Valley of the Bierawka exemplified by the filling-sand mine in Kotlarnia. In: Jersak J. (ed), Less i osady dolinne, Uniwersytet Śląski, Katowice: 93-118.

Katzsch M., 2009. Methodik zur systematischen Bewertung von Gefahren aufgrund von Bombenblindgängern aus dem Zweiten Weltkrieg am Beispiel der Stadt Oranienburg. Dissertation. Fakultat fur Umweltwissenschaften und Verfahrenstechnik der Brandenburgischen Technischen Universitat. Cottbus: 207 p.

Kirsch J., Reinhold G., 1986. Geophysikalische Methoden zur Erkundung von Altlasten. Naturwissenschaften 73: 635-642. DOI: https://doi.org/10.1007/BF00366683

Konieczny A., 1998. Śląsk a wojna powietrzna lat 1940-1944. Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław.

Kotlicki S., Kotlicka G.N., 1980. Objaśnienia do mapy geologicznej Polski 1:200 000, Ark. Gliwice. Państwowy Instytut Geologiczny, Warszawa.

Kruse C., Rottensteiner F., Heipke C., 2019. Marked point processes for the automatic detection of bomb craters in aerial wartime images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W13: 51-60. DOI: https://doi.org/10.5194/isprs-archives-XLII-2-W13-51-2019

Law of 3 February 1995 on the Protection of Agricultural and Forest Land, 2022. Ustawa z dnia 3 lutego 1995 r. o ochronie gruntów rolnych i leśnych. Dz.U.2022.2409. Online: sip.lex.pl/akty-prawne/dzu-dziennik-ustaw/ochrona-gruntow-rolnych-i-lesnych-16796586 (accessed May 12, 2025).

Liu Z., Igland R., Bruaseth S., Ercoli-Malacari L., Lillebø O.A., 2019. A Design Practice for Subsea Pipeline Subjected to UXO Hazards. Proceedings of International Conference on Ocean, Offshore, and Arctic Engineering (OMAE). ASME, Digital Collection, The American Society of Mechanical Engineers. Paper No: OMAE2019-96343, V05BT04A026. DOI: https://doi.org/10.1115/OMAE2019-96343

Loke M.H., 2000. Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys. Malaysia: Geotomo. Online: pages.mtu.edu/~ctyoung/LOKENOTE.PDF (accessed May 12, 2025).

Mahling M., Höhle M., Küchenhoff H., 2013. Determining high-risk zones for unexploded World War II bombs by using point process methodology. Journal of the Royal Statistical Society: Series C Applied Statistics 62: 181-199. DOI: https://doi.org/10.1111/j.1467-9876.2012.01055.x

Masche F., 2011. The quality management system in the German explosive ordnance disposal programme. GIHD 2013, 1-28. Online: www.gichd.org/publications-resources/publications/ (accessed May 12, 2025).

Miller D.L., 2017. Władcy przestworzy. Amerykańscy lotnicy w walce z nazistowskimi Niemcami. Wydawnictwo Replika, Poznań.

Note N., Saey T., Gheyle W., Stichelbaut B., Van den Berghe H., Bourgeois J., Van Eetvelde V., Van Meirvenne M., 2019. Evaluation of fluxgate magnetometry and electromagnetic induction surveys for subsurface characterization of archaeological features in World War 1 battlefields. Geoarchaeology 34: 136-148. DOI: https://doi.org/10.1002/gea.21700

O’Neill K., Fernández J.P., 2009. Electromagnetic Methods for UXO Discrimination. In: J.Byrnes (ed), Unexploded Ordnance Detection and Mitigation, Springer, Dordrecht.

Pospíšil J., Staňková H., Černota P., Roman J., Budayová M., Srnová K., Havlíčková J., Maixnerová M., 2022. Vyhledání nevybuchlé letecké munice 2. světové války VI20192021160. Predikce nálezů nevybuchlé letecké munice z leteckých snímků. Certifikovaná metodika. Vysoká škola báňská – Technická univerzita Ostrava, PRIMIS spol. s r. o. Ostrava, Ministerstvo vnitra české republiky.

Pulkowski R., 2020. Robotnicy znaleźli półtonową bombę: zdetonowano ją na miejscu . Lokalna24, April 10. Online: lokalna24.pl/wiadomosci/3553,robotnicy-znalezli-poltonowa-bombe-zdetonowano-ja-na-miejscu (accessed June 10, 2021).

Report of the Defense Science Board Task Force on Unexploded Ordnance. 2003. Office of the Under Secretary of Defense For Acquisition, Technology and Logistics, Washington, D.C. 2003. Online: www.denix.osd.mil/mmrp/denix-files/sites/46/2016/03/03_UXO_REPORT.pdf (accesses May 12, 2025).

Rose S. 2019. Systematische Kampfmittelsuche der Stadt Oranienburg. 3. Kampfmittelfachtagung Auf dem Weg zu bundesein-heitlichen Standards Berlin, 27. und 28. Mai 2019, Kronprinzenpalais. Bundesanstalt für Immobilienaufgaben Zentrale, Bonn: 58-61.

Šafář V., Staňková H., Pospíšil J., Budayová M., 2022. Investigation of Unexploded Aircraft Ammunition from WW2 in Connection with Construction Proceedings. Inżynieria Mineralna 43-49. DOI: https://doi.org/10.29227/IM-2022-01-05

Schubert C., Kurtz H., 1930. Unterfuchungen im Wiegschützer Moor. Der Oberschlesier 12(6): 430-434.

Shepherd E.J., 2016. Mapping Unexploded Ordnance in Italy: The Role of World War II Aerial Photographs. In: B.Stichelbaut, D.Cowley (eds), Conflict Landscapes and Archaeology from Above, eds, Routledge, London: 205-217.

Spyra W., Katzsch M. (eds), 2007. Environmental Security and Public Safety. Problems and Needs in Conversion Policy and Research after 15 Years of Conversion in Central and Eastern Europe. Dordrecht, Springer. DOI: https://doi.org/10.1007/978-1-4020-5644-4

Talik A., Mularczyk T., 2020. System likwidacji śmiercionośnych zagrożeń. Przegląd Sił Zbrojnych 2: 58-64.

Trusheim F., 1940. Fliegerbomben und Geologie – kleine geologische Beobachtungen an Fliegerbomben-Einschlagen. Natur und Volk 70(7): 317-321.

Trzciński W.A., Hańderek J., 2015.Wyznaczanie stref zagrożenia odłamkami. Materiały Wysokoenergetyczne 7: 14-30.

Unexploded Ordnance Desk Study (MACC International), 2011. MACC UXO Threat Assessment N133-BCR-MMD-00-Z-DC-X-0001-S2-1.0. London. Online: content.tfl.gov.uk/bscu-twao-envstatement-appendix14-3-unexplodedordnancedeskstudy.pdf (accessed May 12, 2025).

Waga J.M., Fajer M., 2021. The heritage of the Second World War: bombing in the forests and wetlands of the Koźle Basin. Antiquity 95(380): 417-434. DOI: https://doi.org/10.15184/aqy.2020.154

Waga J.M., Fajer M., Szypuła B., 2022a. The scars of war: a programme for the identification of the environmental efects of Word War II bombings for the purposes of spatial management in the Koźle Basin, Poland. Environmental and Socioeconomic Studies 10(1): 57-67. DOI: https://doi.org/10.2478/environ-2022-0005

Waga J.M., Fajer M., Szypuła B., 2023. Current and potential landscape functions of areas with the remnants of World War II bombing in the Koźle Basin. Environmental and Socio-economic Studies 11(2): 29-41. DOI: https://doi.org/10.2478/environ-2023-0009

Waga, J.M., Szypuła B., Fajer M., 2022d. Heritage of war: Analysis of bomb craters using Lidar (Kędzierzyn-Koźle, Poland). International Journal of Conservation Science 13(2): 593-608.

Waga J.M., Szypuła B., Fajer M., 2022b. The Archaeology of Unexploded World War II Bomb Sites in the Koźle Basin, Southern Poland. International Journal of Historical Archaeology 27: 688-713. DOI: https://doi.org/10.1007/s10761-022-00672-5

Waga J.M., Szypuła B., Sendobry K., Fajer M., 2022c. Anthropogenic Landforms Derived from LiDAR Data in the Woodlands near Kotlarnia (Koźle Basin, Poland). Sensors 22, 8328. DOI: https://doi.org/10.3390/s22218328

Wójcicki K.J., Marynowski L., 2012. The organic and mineral matter contents in deposits infilling floodplain basins: Holocene alluviation record from the Kłodnica and Osobłoga river valleys, southern Poland. Geomorphology 159-160: 15-29. DOI: https://doi.org/10.1016/j.geomorph.2012.02.020