Abstract
The legacy of Pleistocene glaciation in the Babia Góra massif (1725 m a.s.l.) has been the subject of vigorous debate for over a century. These controversies have been largely influenced by the poor preservation of glacial landforms and their extensive overprint by rock slope failures (RSFs). In this context, geomorphological criteria alone have proven insufficient for a comprehensive interpretation of glacial features in flysch lithology, which has been heavily shaped by landslides. In this study, we present the results of field and LiDAR-supported geomorphological mapping, clast morphology analysis and micromorphological examination of sand-sized quartz grains. This multiproxy approach, when combined with previously published Schmidt-hammer data, provides robust evidence for the presence of glaciation in the Babia Góra massif. The Late Pleistocene palaeoglacier (area 0.87 km2, 2.2 km long) was reconstructed in the headwaters of the Szumiąca Woda valley. Mapped latero-frontal moraines mark the extent of the glacier front at 930 m a.s.l. The glacier equilibrium line altitude (ELA) calculated from glacier hypsometry with the area altitude balance ratio (AABR) 1.6 was 1272 m. However, after accounting for the topographic effect of additional snow accumulation, the climatic ELA was recalculated and placed at 1354 m a.s.l. These findings suggest that, in addition to the previously known eastward horizontal gradient of ELA rise, a southward trend of rising ELA was also observed across the Western Carpathians.
References
Alexandrowicz S.W., 1978. The northern slope of Babia Góra Mt. as a huge rock slump. Studia Geomorphologica Carpatho-Balcanica 12: 133-148.
Ananev G.S. (red.), 1981. Geomorfologiya osevoj zony Vostochnykh Karpat. Izd. Moskovskogo Universiteta, Moskva.
Anderson R.S., Duhnforth M., Colgan W., Anderson L., 2012. Far-flung moraines: Exploring the feedback of glacial erosion on the evolution of glacier length. Geomorphology 179: 269-285. DOI: https://doi.org/10.1016/j.geomorph.2012.08.018
Barr I.D., Lovell H., 2014. A review of topographic controls on moraine distribution. Geomorphology 226: 44-64. DOI: https://doi.org/10.1016/j.geomorph.2014.07.030
Barr I.D., Spagnolo M., 2015. Glacial cirques as palaeoenvironmental indicators: Their potential and limitations. Earth-Science Reviews 151: 48-78. DOI: https://doi.org/10.1016/j.earscirev.2015.10.004
Benn D.I., Ballantyne C.K., 1994. Reconstructing the transport history of glacigenic sediments: A new approach based on the co-variance of clast form indices. Sedimentary Geology 91: 215-227. DOI: https://doi.org/10.1016/0037-0738(94)90130-9
Benn D.I., Ballantyne C.K., 2005. Palaeoclimatic reconstruction from Loch Lomond Readvance glaciers in the West Drumochter Hills, Scotland. Journal of Quaternary Science 20(6): 577-592. DOI: https://doi.org/10.1002/jqs.925
Benn D.I., Hulton N.R.J., 2010. An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computer and Geosciences 36: 605-610. DOI: https://doi.org/10.1016/j.cageo.2009.09.016
Benn D.I., Lehmkuhl F., 2000. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International 65-66: 15-29. DOI: https://doi.org/10.1016/S1040-6182(99)00034-8
Brook M.S., Lukas S., 2012. A revised approach to discriminating sediment transport histories in glacigenic sediments in a temperate alpine environment: A case study from Fox Glacier, New Zealand. Earth Surface Processes and Landforms 37(8): 895-900. DOI: https://doi.org/10.1002/esp.3250
Brown J.E., 1973. Depositional histories of sand grains from surface textures. Nature 242(5397): 396-398. DOI: https://doi.org/10.1038/242396a0
Cailleux A., 1942. Les Actions Eoliens Periglaciaries en Europe. Memoirs vol. 21. Société Géol., France, No. 46: 1-176.
Coleman C.G., Carr S.J., Parker A.G., 2009. Modelling topoclimatic controls on palaeoglaciers: Implications for inferring palaeoclimate from geomorphic evidence. Quaternary Science Reviews 28: 249-259. DOI: https://doi.org/10.1016/j.quascirev.2008.10.016
Dahl S.O., Nesje A., 1992. Equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene glaciers in Fosdalen, inner Nordfjord, western Norway. Norsk Geologisk Tidsskrift 72: 206-216.
Dobiński W., Glazer M., Bieta B., Mendecki M.J., 2016. Poszukiwanie wieloletniej zmarzliny i budowa geologiczna Babiej Góry w świetle wyników obrazowania elektrooporowego. Przegląd Geograficzny 88(1): 31-51. DOI: https://doi.org/10.7163/PrzG.2016.1.2
Doornkamp J.C., Krinsley D., 1971. Electron microscopy applied to quartz grains from a tropical environment. Sedimentology 17(1-2): 89-101. DOI: https://doi.org/10.1111/j.1365-3091.1971.tb01133.x
Engel Z., Nývlt D., Křížek M., Treml V., Jankovská V., Lisá L., 2010. Sedimentary evidence of landscape and climate history since the end of MIS 3 in the Krkonoše Mountains, Czech Republic. Quaternary Science Reviews 29 (7-8): 913-927. DOI: https://doi.org/10.1016/j.quascirev.2009.12.008
Engel Z., Traczyk A., Braucher R., Woronko B., Křížek M., 2011. Use of 10Be exposure ages and Schmidt hammer data for correlation of moraines in the Krkonoše Mountains, Poland/Czech Republic. Zeitschrift für Geomorphologie 55(2): 175-196. DOI: https://doi.org/10.1127/0372-8854/2011/0055-0036
Evans I.S., 1977. World-wide variations in the direction and concentration of cirque and glacier aspects. Geografiska Annaler Series B 59(3-4): 151-175. DOI: https://doi.org/10.1080/04353676.1977.11879949
Evans I.S., 2006. Allometric development of glacial cirque form: Geological, relief and regional effects on the cirques of Wales. Geomorphology 80: 245-266. DOI: https://doi.org/10.1016/j.geomorph.2006.02.013
Evans I.S., 2021. Glaciers, rock avalanches and the ‘buzzsaw’ in cirque development: Why mountain cirques are of mainly glacial origin. Earth Surface Processes and Landforms 46(1): 24-46. DOI: https://doi.org/10.1002/esp.4810
Fick S.E., Hijmans R.J., 2017. WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302-4315. DOI: https://doi.org/10.1002/joc.5086
Glasser N.F., Harrison S., Jansson K.N., 2009. Topographic controls on glacier sediment -Landform associations around the temperate North Patagonian Icefield. Quaternary Science Reviews 28(25): 2817-2832. DOI: https://doi.org/10.1016/j.quascirev.2009.07.011
Graham D.J., Midgley N.G., 2000. Graphical representation of particle shape using triangular diagrams: An Excel spreadsheet method. Earth Surface Processes and Landforms 25(13): 1473-1477. DOI: https://doi.org/10.1002/1096-9837(200012)25:13<1473::AID-ESP158>3.0.CO;2-C
GUGiK [Główny Urząd Geodezji i Kartografii], 2025 Geoportal. Online: www.geoportal.gov.pl (accessed January 1, 2025).
Hanslik E., 1907. Die Eiszeit in den Schlesischen Beskiden. Mitteilungen der Österreichischen Geographischen Gesellschaft 50: 20-32.
Hedding D.W., Sumner P.D., 2013. Diagnostic criteria for pronival ramparts: Site, morphological and sedimentological characteristics. Geografiska Annaler: Series A, Physical Geography 95: 315-322. DOI: https://doi.org/10.1111/geoa.12021
Higgs R., 1979. Quartz-grain surface features of Mesozoic-Cenozoic sands from the Labrador and western Greenland continental margins. Journal of Sedimentary Research 49(2): 599-610. DOI: https://doi.org/10.1306/212F779D-2B24-11D7-8648000102C1865D
Howard J.L., Amos D.F., Daniels W.L., 1996. Micromorphology and dissolution of quartz sand in some exceptionally ancient soils. Sedimentary Geology 105(1-2): 51-62. DOI: https://doi.org/10.1016/0037-0738(95)00133-6
Hughes P.D., Gibbard P.L., Woodward J.C., 2007. Geological controls on Pleistocene glaciation and cirque form in Greece. Geomorphology 88: 242-253. DOI: https://doi.org/10.1016/j.geomorph.2006.11.008
Jahn A., 1958. Mikrorelief peryglacjalny Tatr i Babiej Góry. Biuletyn Peryglacjalny 6: 57-80.
Jankowski L., Garecka M., 2022. Objaśnienia do Szczegółowej Mapy Polski. PIG-PIB, Warszawa, Ark. (1031) Zawoja.
Kalińska-Nartiša E., Woronko B., Ning W., 2017. Microtextural inheritance on quartz sand grains from Pleistocene periglacial environments of the Mazovian Lowland, central Poland. Permafrost and Periglacial Processes 28(4): 741-756. DOI: https://doi.org/10.1002/ppp.1943
Klimaszewski M. 1952. Zagadnienia plejstocenu południowej Polski. Biuletyn Państwowego Instytutu Geologicznego 65: 137-268.
Kłapyta P., 2020. Geomorphology of the high-elevated flysch range -Mt. Babia Góra massif (Western Carpathians). Journal of Maps 16: 689-701. DOI: https://doi.org/10.1080/17445647.2020.1800530
Kłapyta P., Bryndza M., Zasadni J., Jasionek M., 2022b. The lowest elevation Pleistocene glaciers in the Carpathians -The geomorphological and sedimentological record of glaciation in the Polonyna Rivna and Borzhava massifs (Ukraine Carpathians). Geomorphology 398: 108060. DOI: https://doi.org/10.1016/j.geomorph.2021.108060
Kłapyta P., Mîndrescu M., Zasadni J., 2021a. Geomorphological record and equilibrium line altitude of glaciers during the last glacial maximum in the Rodna Mountains (Eastern Carpathians). Quaternary Research 100: 1-20. DOI: https://doi.org/10.1017/qua.2020.90
Kłapyta P., Mîndrescu M., Zasadni J., 2022a. The impact of local topoclimatic factors on marginal Pleistocene glaciation in the Northern Romanian Carpathians. Catena 210: 105873. DOI: https://doi.org/10.1016/j.catena.2021.105873
Kłapyta P., Mîndrescu M., Zasadni J., 2023b. Late Pleistocene glaciation in the headwaters of the Ceremuşul Alb valley (Maramureş Mountains, Romania). Geographica Polonica 96: 13-28. DOI: https://doi.org/10.7163/GPol.0243
Kłapyta P., Zasadni J., 2018. Research history on the Tatra Mountains glaciations. Studia Geomorphologica Carpatho-Balcanica 51-52: 43-85.
Kłapyta P., Zasadni J., Dubis L., Świąder A., 2021b. Glaciation in the highest parts of the Ukrainian Carpathians (Chornohora and Svydovets massifs) during the local last glacial maximum. Catena 203: 105346. DOI: https://doi.org/10.1016/j.catena.2021.105346
Kłapyta P., Zasadni J., Mîndrescu M., 2023a. Late Pleistocene glaciation in the Eastern Carpathians -A regional overview. Catena 224: 1-20. DOI: https://doi.org/10.1016/j.catena.2023.106994
Kłapyta P., Zasadni J., Mîndrescu M.,Dubis L., 2024. Glacial geomorphology and glacier reconstruction in the Maramureş Mountains (Romania and Ukraine). Geoconcept 1:80-102.
Kłapyta P., Zatorski M., Kondracka M., 2025. Evolution of rock slope failures in the flysch area -Insight from the Babia Góra massif (Western Carpathians, Poland). Catena 254: 1-17.108948. DOI: https://doi.org/10.1016/j.catena.2025.108948
Klimaszewski M., 1948. Polskie Karpaty Zachodnie w okresie dyluwialnym. Prace Wrocławskiego Towarzystwa Naukowego, Wrocław: 7.
Krumbein W.C., 1941. Measurement and geological significance of shape and roundness of sedimentary particles. Journal of Sedimentary Research 11(2): 64-72. DOI: https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D
Książkiewicz M., 1963. Zarys geologii Babiej Góry. Zakład Ochrony Przyrody PAN 22: 69-87.
Książkiewicz M., 1966. Geologia regionu babiogórskiego. Przewodnik XXXIX Zajadu Polskiego Towarzystwa Geologicznego 5-59.
Książkiewicz M., 1971. Szczegółowa mapa geologiczna Polski 1:50 000, arkusz Zawoja. Instytut Geologiczny.
Książkiewicz M., 1983. The geology of the Babia Góra region. In: K. Zabierowski (Ed.), National Park on the Babia Góra Mt. Nature and Man. Studia Naturae B 29: 25-39.
Łajczak A., 1981. Formy glacjalne na Babiej Górze. Prace Babiogórskie 3: 43-53.
Łajczak A., 1998. Distribution of glacial and nival forms in the Babia Góra massif, Western Carpathians. Proceedings of the 4th Meeting of Polish Geomorphologists Part II, Lublin: 349-356.
Łajczak A., 2013. Relief development of a highly elevated monoclinal Babia Góra range built by Magura sandstone, Western Carpathian Mts. In: Migoń P., Kasprzak M. (eds), Sandstone landscapes. Diversity, ecology and conservation. Eds. Edn. Proc. of Wrocław University: 100-105.
Łajczak A., 2015. Monografia masywu Pilska (Beskid Żywiecki). Instytut Botaniki im. W. Szafera Polskiej Akademii Nauk, Kraków.
Łajczak A., 2016. Wody Babiej Góry. In: Monografie Babiogórskie. Babiogórski Park Narodowy. Homago Studio Graficzne, Maków Podhalański.
Łajczak A., 2023. Mt. Babia Góra—The highest flysch ridge in the western Carpathians. In: Migoń P., Jancewicz K. (eds), Landscapes and landforms of Poland. Springer: 249-268. DOI: https://doi.org/10.1007/978-3-031-45762-3_13
Łajczak A., Margielewski W., Zielonka T., Pasierbek T., Lamorski T., Kozina P., Izworska K., 2023. Cylowa Zerwa landslide -Debris flow forms on Mount Babia Góra (1725) and their development over the last ca. 150 years, Western Carpathians. Geographia Polonica 96(1): 79-101. DOI: https://doi.org/10.7163/GPol.0247
Łajczak A., Migoń P., 2007. The 2002 debris flow in the Babia Góra massif -Implications for the interpretation of mountainous Geomorphic systems. Studia Geomorphologica Carpatho-Balcanica 51: 97-116.
Łajczak A., Włoch E., 2004. Gołoborza na Babiej Górze i ich znaczenie paleogeograficzne. In: Łajczak A. (ed.), Pokrywy stokowe gór średnich strefy umiarkowanej i ich znaczenie paleogeograficzne. Warsztaty Geomorfologiczne, Zawoja.
Lukas S., Benn D.I., Boston C.M., Brook M., Coray S., Evans D.J.A., Graf A., Kellerer- Pirklbauer A., Kirkbride M.P., Krabbendam M., Lovell H., Machiedo M., Mills S.C., Nye K., Reinardy B.T.I., Ross F.H., Signer M., 2013. Clast shape analysis and clast transport paths in glacial environments: A critical review of methods and the role of lithology. Earth-Science Reviews 121: 96-116. DOI: https://doi.org/10.1016/j.earscirev.2013.02.005
Lukniš M., 1964. The course of the last glaciation of the Western Carpathians in the relation to the Alps, to the glaciation of northern Europe, and to the division of the central European Würm into periods. Geograficky Časopis, SAV 16(2): 127-142. (in Slovak).
Maglay J., Moravcová M., Šefčík P., Vlačíki M., Pristaš J., 2011. Prehľadná geologická mapa kvartéru Slovenska, 1: 200 000. Štatny geologicky ustav Dionyza Štura, Bratislava.
Mahaney W.C., 2002. Atlas of sand grain surface textures and applications. Oxford University Press.
Mahaney W.C., Hancock R.G., Melville H., 2011. Late glacial retreat and Neoglacial advance sequences in the Zillertal Alps, Austria. Geomorphology 130(3-4): 312-326. DOI: https://doi.org/10.1016/j.geomorph.2011.04.013
Mentlík P., Minár J., Břízová E., Lisá L., Tábořík P., Stacke V., 2010. Glaciation in the surroundings of Prášilské Lake (Bohemian Forest, Czech Republic). Geomorphology 117(1-2): 181-194. DOI: https://doi.org/10.1016/j.geomorph.2009.12.001
Midowicz W., 1974. Babia Góra. Monografia turystyczna. Karpaty 2: 61-96.
Miller H.P., 1963. Struktura, genezis i voprosy racionalnogo ispolzovaniya landshafta Chernogory v Ukrainskikh Karpatakh: avtoref. dis. na soisk. uch. stupeni kand. geogr. nauk: spec. 11.00.01. Lvov.
Mîndrescu M., Evans I.S., 2014. Cirque form and development in Romania: Allometry and the buzzsaw hypothesis. Geomorphology 208: 117-136. DOI: https://doi.org/10.1016/j.geomorph.2013.11.019
Mitchell W.A., 1996. Significance of snowblow in the generation of Loch Lomond Stadial (Younger Dryas) glaciers in the western Pennines, northern England. Journal Of Quaternary Science 11: 233-248. DOI: https://doi.org/10.1002/(SICI)1099-1417(199605/06)11:3<233::AID-JQS240>3.0.CO;2-Q
Molén M.O., 2014. A simple method to classify diamicts by scanning electron microscope from surface microtextures. Sedimentology 61(7): 2020-2041. DOI: https://doi.org/10.1111/sed.12127
Molén M.O., 2023. Patterns, processes and models -An analytical review of current ambiguous interpretations of the evidence for pre-Pleistocene glaciations. Geologos 29(3): 139-166. DOI: https://doi.org/10.14746/logos.2023.29.3.15
Mycielska-Dowgiałło E., Woronko B., 1998. Analiza obtoczenia i zmatowienia ziarn kwarcowych frakcji piaszczystej i jej wartość interpretacyjna. Przegląd Geologiczny 46(12): 1275-1281.
Niedźwiedź T., Orlicz M., Orliczowa J., 1985. Wiatr w Karpatach Polskich. In: Dokumentacja Geograficzna. IG i GP PAN: 6.
Niemirowski M., 1963. Szkic geograficzny obszaru babiogórskiego. Zakład Ochrony Przyrody PAN 22: 21-43.
Obrębska-Starklowa B., 2004. Klimat masywu Babiej Góry. In: Wołoszyn B.W., Jaworski A., Szwagrzyk J. (eds), Babiogórski Park Narodowy -monografia przyrodnicza. Komitet Ochrony Przyrody PAN, Babiogórski Park Narodowy: 137-151.
Oien R.P., Spagnolo M., Rea B.R., Barr I.D., Bingham R.G., 2020. Climatic controls on the equilibrium-line altitudes of Scandinavian cirque glaciers. Geomorphology 352: 1-11. DOI: https://doi.org/10.1016/j.geomorph.2019.106986
Paulo K., 1937. Zjawiska glacjalne i periglacjalne w Małej Fatrze. Badania Geograficzne 18-19: 71-115.
Pawłowski S., 1933. Z badan nad zlodowaceniem polskich Karpat. Czasopismo Geograficzne 11(1-2): 1-5.
Pawłowski S., 1936. Les Karpates a l’epoque glaciaire. Congres Internationale de Geographie (Varsovie 1934). Comptes Rendus, Travaux de section 2: 89-141.
Pax F., 1905. Vegetation der Babiagura. Mitteilungen des Beskidenvereines 2(1): 5.
Pedersen V.K., Egholm D.L., 2013. Glaciations in response to climate variations preconditioned by evolving topography. Nature 493(7431): 206-210. DOI: https://doi.org/10.1038/nature11786
Pellitero R., Rea B.R., Spagnolo M., Bakke J., Hughes P., Ivy-Ochs S., Lukas S., Ribolini A., 2015. A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers and Geosciences 82: 55-62. DOI: https://doi.org/10.1016/j.cageo.2015.05.005
Powers M.C., 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Research 23(2): 117-119. DOI: https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D
Pye K., 1983. Formation of quartz silt during humid tropical weathering of dune sands. Sedimentary Geology 34(4): 267-282. DOI: https://doi.org/10.1016/0037-0738(83)90050-7
Pye K., Mazzullo J., 1994. Effects of tropical weathering on quartz grain shape; an example from northeastern Australia. Journal of Sedimentary Research 64(3a): 500-507. DOI: https://doi.org/10.1306/D4267DE8-2B26-11D7-8648000102C1865D
Pyrda A., 2025. Zlodowacenie północnego skłonu Tatr Niżnych.MS, Uniwersytet Komisji Edukacji Narodowej w Krakowie, Kraków.
Rose K.C., Hart J.K., 2008. Subglacial comminution in the deforming bed: Inferences from SEM analysis. Sedimentary Geology 203(1-2): 87-97. DOI: https://doi.org/10.1016/j.sedgeo.2007.11.003
Roverato M., Cronin S., Procter J., Capra L., 2015. Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. Geological Society of America Bulletin 127(1-2): 3-18. DOI: https://doi.org/10.1130/B30946.1
Ruszkiczay-Rüdiger Z., Kern Z., Urdea P., Madarász B., Braucher R., ASTER Team., 2021. There was limited glacial erosion during the last glaciation in mid-latitude cirques (Retezat Mts, Southern Carpathians, Romania). Geomorphology 384: 107719. DOI: https://doi.org/10.1016/j.geomorph.2021.107719
Ruszkiczay-Rüdiger Z., Temovski M., Kern Z., Madarász B., Milevski I., Lachner J., Steier P., 2022. Late Pleistocene glacial advances, equilibrium-line altitude changes and paleoclimate in the Jakupica Mts (North Macedonia). Catena 216: 106383. DOI: https://doi.org/10.1016/j.catena.2022.106383
Sawicki L., 1912. Les ´etudes glaciaire dans les Karpates. Aperçu historique et critique. Annales de G´eographie, Paris: 21. DOI: https://doi.org/10.3406/geo.1912.7073
Sawicki L., 1913. Krajobrazy lodowcowe Zachodniego Beskidu. Rozprawy Wydziału Matematyczno-Przyrodniczego PAU 53: 1-21.
Schulz M.S., White A.F., 1999. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico III: quartz dissolution rates. Geochimica et Cosmochimica Acta 63(3-4): 337-350. DOI: https://doi.org/10.1016/S0016-7037(99)00056-3
Sharp M., Gomez B., 1986. Processes of debris comminution in the glacial environment and implications for quarts sand-grain micromorphology. Sedimentary Geology 46(1-2): 33-47. DOI: https://doi.org/10.1016/0037-0738(86)90004-7
Sikora W., Żytko K., 1960. Budowa Beskidu Wysokiego na południe od Żywca (Geology of the Beskid Wysoki range south of Żywiec, Western Carpathians). Biuletyn Instytutu Geologicznego 141: 61-204.
Sîrcu I., 1962. Rolul alunecarilor şi prabuşirilor de mase de roci în formarea reliefului munţilor cristalini ai Rodnei, Anal. şt. Univ. « Al. I. Cuza » Iaşi, (Seria noua), secţ. II (Şt. nat), b. Geologie- Geografie 8: 81-94.
Sîrcu I., 1963. Le probleme de la glaciation quaternaire dans les montagnes du Maramureş, Anal. şt. Univ. `Al. I. Cuza` Iaşi, (Seria noua), secţ. II (Şt. nat), b. Geologie- Geografie 9: 125-134.
Sissons J.B., Sutherland D.G., 1976. Climatic inferences from glaciers in the South-East Grampian Highlands, Scotland. Journal of Glaciology 17: 325-346. DOI: https://doi.org/10.3189/S0022143000013617
Sneed E.D., Folk R.L., 1958. Pebbles in the lower Colorado River, Texas, a study in particle morphogenesis. Journal of Geology 66: 114-150. DOI: https://doi.org/10.1086/626490
Spagnolo M., Pellitero R., Barr I.D., Ely J.C., Pellicer X.M., Rea B.R., 2017. ACME, a GIS tool for automated cirque metric extraction. Geomorphology 278: 280-286. DOI: https://doi.org/10.1016/j.geomorph.2016.11.018
Starkel L., 1960. Rozwój rzeźby Karpat fliszowych w holocenie. Prace Geograficzne IG PAN 22.
Świderski B., 1938. Geomorfologia Czarnohory. Wyd. Kasy im, Mianowskiego, Warszawa.
Tietze E., 1888. Geologische Beschreibung des Gebieten von Krakau. Jahrbuch dar k. k. Geol, Reichsanstalt. Wien.
Traczyk A., Woronko B., 2010. Historia zlodowacenia doliny Łomnicy w Karkonoszach w zapisie mikromorfologii powierzchni ziarn kwarcu. Przegląd Geologiczny 58(12): 1182-1191.
Urdea P., Ardelean F., Ardelean M., Onaca A., Hughes P.D., 2022. Glacial landscapes of the Romanian Carpathians. 109-114. DOI: https://doi.org/10.1016/B978-0-12-823498-3.00031-5
Vos K., Vandenberghe N., Elsen J., 2014. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Science Reviews 128: 93-104. DOI: https://doi.org/10.1016/j.earscirev.2013.10.013
Whalley W.B., 2009. On the interpretation of discrete debris accumulations associated with glaciers with special reference to the British Isles. In: Knight, J., Harrison, S. (Eds.), Periglacial and Paraglacial Processes and Environments. Geological Society London, Special Publications 320: 85-102. DOI: https://doi.org/10.1144/SP320.7
Wilner J.A., Nordin B.J., Getraer A., Gregoire R.M., Krishna M., Li J., Pickell D.J., Rogers E.R., McDannell K.T., Palucis M.C., Keller C.B., 2024. Limits to timescale dependence in erosion rates: Quantifying glacial and fluvial erosion across timescales. Science Advances 10: 51. DOI: https://doi.org/10.1126/sciadv.adr2009
Wójcik A., 1994. Osady glacjalne i osuwiskowe Pilska (Beskid żywiecki). Biuletyn Państwowego Instytutu Geologicznego 369: 49-62.
Wójcik A., Rączkowski W., Mrozek T., Nescieruk P., Marciniec P., Zimnal Z., 2010. Babiogórski Park Narodowy 1: 13 000. Ministerstwo Środowiska, Warszawa.
Woronko B., 2016. Frost weathering versus glacial grinding in the micromorphology of quartz sand grains: Processes and geological implications. Sedimentary Geology 335: 103-119. DOI: https://doi.org/10.1016/j.sedgeo.2016.01.021
Woronko B., Hoch M., 2011. The development of frost-weathering microstructures on sand-sized quartz grains: Examples from Poland and Mongolia. Permafrost and Periglacial Processes 22(3): 214-227. DOI: https://doi.org/10.1002/ppp.725
Woronko B., Pisarska-Jamroży M., 2016. Micro-scale frost weathering of sand-sized quartz grains. Permafrost and Periglacial Processes 27(1): 109-122. DOI: https://doi.org/10.1002/ppp.1855
Wray R.A., Sauro F., 2017. An updated global review of solutional weathering processes and forms in quartz sandstones and quartzites. Earth-Science Reviews 171: 520-557. DOI: https://doi.org/10.1016/j.earscirev.2017.06.008
Zasadni J., Kałuża P., Kłapyta P., Świąder A., 2021. Evolution of the Białka valley Pleistocene moraine complex in the High Tatra Mountains. Catena 207: 105704. DOI: https://doi.org/10.1016/j.catena.2021.105704
Zasadni J., Kłapyta P., 2014. The Tatra Mountains during the last glacial maximum. Journal of Maps 1264(10): 440-456. DOI: https://doi.org/10.1080/17445647.2014.885854
Zasadni J., Kłapyta P., Broś E., Ivy-Ochs S., Świąder A., Christl M., Balážovičová L., 2020. Latest Pleistocene glacier advances and post-Younger Dryas rock glacier stabilization in the Mt. Kriváň group, High Tatra Mountains, Slovakia. Geomorphology 358: 107093. DOI: https://doi.org/10.1016/j.geomorph.2020.107093
Zasadni J., Kłapyta P., Kałuża P., Makos M., 2022. The Tatra Mountains: Glacial landforms prior to the last glacial maximum. In: Palacios D., Hughes P.D., García-Ruiz J.M., de Andrés N. (red.) (eds), European glacial landscapes: Maximum extent of glaciations. Elsevier, Amsterdam, Oxford, Cambridge: 271-275. DOI: https://doi.org/10.1016/B978-0-12-823498-3.00059-5
Zasadni J., Kłapyta P., Świąder A., 2018. Predominant western moisture transport to the Tatra Mountains during the last glacial maximum, inferred from glacier palaeo- ELAs. XXI International Congress of the CBGA.
Žebre M., Stepišnik U., 2014. Reconstruction of Late Pleistocene glaciers on Mount Lovcen. Quaternary International 353: 225-235. DOI: https://doi.org/10.1016/j.quaint.2014.05.006
Ziętara T., 1962. O pseudoglacjalnej rzeźbie Beskidów Zachodnich. Rocznik Naukowo-Dydaktyczny WSP. Geografia 10: 69-87.
Ziętara T., 1989. Rozwój teras krioplanacyjnych w obrębie wierzchowiny Babiej Góry w Beskidzie Wysokim. Folia Geographica, ser. Geographia Physica 21: 79-92.
Ziętara K., Ziętara T., 1958. O rzekomo glacjalnej rzeźbie Babiej Góry. Rocznik Naukowo-Dydaktyczny WSP. Geografia 8: 55-78.
License
Copyright (c) 2025 Piotr Kłapyta, Dawid Siemek

This work is licensed under a Creative Commons Attribution 4.0 International License.
