Abstract
The historical Ner River, receiving sewage for 150 years, has undergone significant hydrochemical changes. Natural hydrological conditions have also been substantially altered due to increased flood dynamics resulting from inflows from the sewered catchment area, which covers a significant portion of the Łódź agglomeration. Research conducted on the Ner River in the Konstantynów Łódzki area aimed to characterise the current hydrodynamic and hydrochemical conditions within the river valley, specifically focussing on its hyporheic zone (HZ). This study was conducted across three research profiles located approximately 5 km downstream from the discharge point of treated sewage from the Group Wastewater Treatment Plant in Łódź. Hydraulic conductivity measurements of riverbed formations indicate moderate to high permeability, facilitating substantial exchange between river water and groundwater due to the large morphological river bottom features. This was supported by vertical hydraulic gradient measurements, indicating predominant groundwater discharge within the profiles. Water samples collected from the riverbed exhibited diverse physicochemical features and chemical compositions. Metal content in the riverbed sediments of the Ner River decreased with increasing distance from the sewage discharge point. The HZ demonstrates the capability to mitigate natural disturbances, process nutrients and stabilise metals. Nevertheless, anthropogenic pressures disrupt the natural hydrological regime, chemical activities and biological processes. The study underscores the necessity of correlating chemical composition results with model estimates of upwelling or downwelling volumes for a comprehensive understanding of hydrochemical changes within heavily anthropogenically transformed river HZs. Furthermore, this correlation facilitates a reliable evaluation of hydrochemical variations within the HZ.
References
Battin T.J., Kaplan L.A., Newbold J.D., Hendricks S.P., 2003. A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function. Freshwater Biology 48: 995-1014. DOI: https://doi.org/10.1046/j.1365-2427.2003.01062.x
Brunke M., Gonser T., 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37: 1-33. DOI: https://doi.org/10.1046/j.1365-2427.1997.00143.x
Buss S., Cai Z., Cardenas B., Fleckenstein J., Hannah D., Heppell K., Hulme P., Ibrahim T., Kaeser D., Krause S., Lawler D., Lerner D., Mant J., Malcolm I., Old G., Parkin G., Pickup R., Pinay G., Porter J., Rhodes G., Richie A., Riley J., Robertson A., Sear D., Shields B., Smith J., Tellam J., Wood P., 2009. The hyporheic handbook: A handbook on the groundwater-surface water interface and hyporheic zone for environment managers. Environment Agency, Bristol.
Dahm C.N., Valett H.M., Baxter C.V., Woessner W.W., 2007. Hyporheic zones. In: Hauer F.R., Lamberti G. (eds), Methods in stream ecology. 2nd Edn. Academic Press, San Diego: 119-236. DOI: https://doi.org/10.1016/B978-012332908-0.50008-5
Dong W., Bhattacharyya A., Fox P.M., Bill M., Dwivedi D., Carrero S., Conrad M., Nico P.S., 2020. Geochemical controls on release and speciation of Fe(II) and Mn(II) from hyporheic sediments of East River, Colorado. Frontiers in Water 2: 562298. DOI: https://doi.org/10.3389/frwa.2020.562298
Drummond J.D., Larsen L.G., González-Pinzón R., Packman A.I., Harvey J.W., 2017. Fine particle retention within stream storage areas at base flow and in response to a storm event. Water Resources Research 53: 5690-5705. DOI: https://doi.org/10.1002/2016WR020202
Hancock P.J., 2002. Human impacts on the stream-groundwater exchange zone. Environmental Management 29: 763-781. DOI: https://doi.org/10.1007/s00267-001-0064-5
Jokiel P., Bartnik A., 2020. Ner: Monografia hydrologiczna niekochanej rzeki. Wydawnictwo Uniwersytetu Łódzkiego, Łódź: 297. DOI: https://doi.org/10.18778/8220-002-7
Krogulec E., Małecki J.J., Szostakiewicz-Hołownia M., Trzeciak J., Zabłocki S., Ziułkiewicz M., 2024. Identification of river valley areas threatening the chemical status of groundwater, in the example of the upper course of the Ner River basin, central Poland. Quaestiones Geographicae 43(3): 21-45. DOI: https://doi.org/10.14746/quageo-2024-0024
Lewandowski J., Arnon S., Banks E., Batelaan O., Betterle A., Broecker T., Coll C., Drummond J.D., Gaona Garcia J., Galloway J., Gomez-Velez J., Grabowski R.C., Herzog S.P., Hinkelmann R., Höhne A., Hollender J., Horn M.A., Jaeger A., Krause S., Prats A.L., Magliozzi C., Meinikmann K., Mojarrad B.B., Mueller B.M., Peralta-Maraver I., Popp A.L., Posselt M., Putschew A., Radke M., Raza M., Riml J., Robertson A., Rutere C., Schaper J.L., Schirmer M., Schulz H., Shanafield M., Singh T., Ward A.S., Wolke P., Wörman A., Wu L., 2019. Is the hyporheic zone relevant beyond the scientific community? Water 11: 2230. DOI: https://doi.org/10.3390/w11112230
Magliozzi C., Grabowski R.C., Packman A.I., Krause S., 2018. Toward a conceptual framework of hyporheic exchange across spatial scales. Hydrology and Earth System Sciences 22: 6163-6185. DOI: https://doi.org/10.5194/hess-22-6163-2018
Marciniak M., Chudziak Ł, 2015. Nowa metoda pomiaru współczynnika filtracji osadów dennych. Przegląd Geologiczny 63(10/2): 919-925.
McDonald M.G., Harbaugh A.W., 1988. A modular three-dimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations 06-A1. USGS Publications Warehouse. 586 p.
Murzynowski W., Małecki J., 1982. Hydrogeological forecast for the areas adjacent to the planned treated water reservoir “Lutomiersk” in the valley of the Ner River for water of the Cretaceous aquifer. Archiwum Zakładu Prac Geologicznych Wydziału Geologii Uniwersytetu Warszawskiego, Warszawa.
Ward A.S., Fitzgerald M., Gooseff M.N., Voltz T.J., Binley A.M., Singha K., 2012. Hydrologic and geomorphic controls on hyporheic exchange during base flow recession in a headwater mountain stream. Water Resources Research 48, W04513: 1-20. DOI: https://doi.org/10.1029/2011WR011461
Witczak S., Kania J., Kmiecik E., 2013. Katalog wybranych fizycznych i chemicznych wskaźników zanieczyszczeń wód podziemnych i metod ich oznaczania. Biblioteka Monitoringu Środowiska, Warszawa.
Ziułkiewicz M., 2022. Salinization of the Moszczenica river`s hyporheic zone in the vicinity of the Rogóźno salt dome. Acta Geographica Lodziensia 112: 163-184. DOI: https://doi.org/10.26485/AGL/2022/112/10
License
Copyright (c) 2025 Ewa Krogulec, Jerzy J. Małecki, Marzena Szostakiewicz-Hołownia, Joanna Trzeciak, Sebastian Zabłocki, Maciej Ziułkiewicz

This work is licensed under a Creative Commons Attribution 4.0 International License.
