MONITORING THE SECONDARY FOREST SUCCESSION AND LAND COVER/USE CHANGES OF THE BŁĘDÓW DESERT (POLAND) USING GEOSPATIAL ANALYSES
PDF

Keywords

LULC changes
Geographic Object Based Image Analysis (GEOBIA)
pixel-based classification
GIS analyses
secondary forest succession

How to Cite

Szostak, M., Wężyk, P., Hawryło, P., & Puchała, M. (2016). MONITORING THE SECONDARY FOREST SUCCESSION AND LAND COVER/USE CHANGES OF THE BŁĘDÓW DESERT (POLAND) USING GEOSPATIAL ANALYSES. Quaestiones Geographicae, 35(3), 5–13. https://doi.org/10.1515/quageo-2016-0022

Abstract

The role of image classification based on multi-source, multi-temporal and multi-resolution remote sensed data is on the rise in the environmental studies due to the availability of new satellite sensors, easier access to aerial orthoimages and the automation of image analysis algorithms. The remote sensing technology provides accurate information on the spatial and temporal distribution of land use and land cover (LULC) classes. The presented study focuses on LULC change dynamics (especially secondary forest succession) that occurred between 1974 and 2010 in the Błędów Desert (an area of approx. 1210 ha; a unique refuge habitat – NATURA 2000; South Poland). The methods included: photointerpretation and on screen digitalization of KH-9 CORONA (1974), aerial orthoimages (2009) and satellite images (LANDSAT 7 ETM+, 1999 and BlackBridge – RapidEye, 2010) and GIS spatial analyses. The results of the study have confirmed the high dynamic of the overgrowth process of the Błędów Desert by secondary forest and shrub vegetation. The bare soils covered 19.3% of the desert area in 1974, the initial vegetation and bush correspondingly 23.1% and 30.5%. In the years 2009/2010 the mentioned classes contained: the bare soils approx. 1.1%, the initial vegetation– 8.7% and bush – 15.8%. The performed classifications and GIS analyses confirmed a continuous increase in the area covered by forests, from 11.6% (KH-9) up to 24.2%, about 25 years later (LANDSAT 7) and in the following 11 years, has shown an increase up to 35.7% (RapidEye 2010).

https://doi.org/10.1515/quageo-2016-0022
PDF

References

Baatz M., Hoffmann C., Willhauck G., 2008. Progressing from Object-Based to Object-Oriented Image Analysis.In: Blaschke T., Lang S., Hay G.J. (eds), Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications. 1st ed. Springer, Berlin, Heidelberg: 29–42.

Baatz M., Schape A., 2000. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation. Journal of Photogrammetry and Remote Sensing 58(3–4): 12–23.

Benz U., Hofmann P., Willhauck G., Lingenfelder I., Heynen M., 2004. Multi-Resolution, Object-Oriented Fuzzy Analysis of Remote Sensing Data for GIS-Ready Information. ISPRS Journal of Photogrammetry and Remote Sensing 58(3–4): 239–258. DOI: 10.1016/j.isprsjprs.2003.10.002.

Bergen K.M., Dronova I., 2007. Observing Succession on Aspen-Dominated Landscapes Using a Remote Sensing-Ecosystem Approach. Landscape Ecology 22(9): 1395–1410. DOI: 10.1007/s10980-007-9119-1.

Blaschke T., Hay G.J., Kelly M., Lang S., Hofmann P., Addink E., Queiroz Feitosa R. et al., 2014. Geographic Object-Based Image Analysis – Towards a New Paradigm. ISPRS Journal of Photogrammetry and Remote Sensing 87 (January): 180–191. DOI: 10.1016/j.isprsjprs.2013.09.014.

Blaschke T., 2010. Object Based Image Analysis for Remote Sensing. ISPRS Journal of Photogrammetry and Remote Sensing 65(1): 2–16. DOI: 10.1016/j.isprsjprs.2009.06.004.

Bork E.W., Su J.G., 2007. Integrating LIDAR Data and Multispectral Imagery for Enhanced Classification of Rangeland Vegetation: A Meta Analysis. Remote Sensing of Environment 111(1): 11–24. DOI: 10.1016/j.rse.2007.03.011.

Bryś H., Gołuch P., 2011. Pustynia Błędowska dawniej i dziś – interpretacja wieloczasowych zdjęć. Acta Scientiarum Polonorum. Geodesia et Descriptio Terratum 10(2): 5–15.

Coops N., White J.D., 2003. Modeling Forest Productivity Using Data Acquired through Remote Sensing. In: Wulder M., Franklin S.E. (eds), Remote Sensing of Forest Environments: Concepts and Case Studies. Springer: 411–432.

Corona P., Lamonaca A., Chirici G., 2008. Remote Sensing Support for Post Fire Forest Management. Iforest-Biogeosciences and Forestry 1: 6–12. DOI: 10.3832/Ifor0305-0010006.

Corine Land Cover (http://www.eea.europa.eu/publications/COR0-landcover).

de Kok R., Wężyk P., 2008. Principles of Full Autonomy in Image Interpretation. The Basic Architectural Design for a Sequential Process with Image Objects. In: Blaschke T., Lang S., Hay G.J. (eds), Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications. 1st ed. Springer, Berlin, Heidelberg: 697–710.

Drzewiecki W., Wężyk P., Pierzchalski M., Szafrańska B., 2014. Quantitative and Qualitative Assessment of Soil Erosion Risk in Małopolska (Poland), Supported by an Object-Based Analysis of High-Resolution Satellite Images. Pure and Applied Geophysics 171(6): 867–895. DOI: 10.1007/s00024-013-0669-7.

Falkowski M.J., Evans J.S., Martinuzzi S., Gessler P.E., Hudak A.T., 2009. Characterizing Forest Succession with Lidar Data: An Evaluation for the Inland Northwest, USA. Remote Sensing of Environment 113(5): 946–956. DOI: 10.1016/j.rse.2009.01.003.

Hay G.J., Castilla G., 2006. Object-Based Image Analysis: Strengths, Weaknesses, Opportunities and Threats (SWOT). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 36: 4.

Hay G.J., Castilla G., 2008. Geographic Object-Based Image Analysis (GEOBIA): A New Name for a New Discipline. In: Blaschke T., Lang S., Hay G.J. (eds), Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications. 1st ed. Springer, Berlin, Heidelberg: 75–89. DOI: 10.1007/978-3-540-77058-9.

Jensen J.R., 2005. Introductory Digital Image Processing. 3rd ed.

Latifi H., Galos B., 2010. Remote Sensing-Supported Vegetation Parameters for Regional Climate Models: A Brief Review. Iforest-Biogeosciences and Forestry 3: 98–101. DOI: 10.3832/ifor0543-003.

Mancino G., Nolè A., Ripullone F., Ferrara A., 2014. Landsat TM Imagery and NDVI Differencing to Detect Vegetation Change: Assessing Natural Forest Expansion in Basilicata, Southern Italy. iForest – Biogeosciences and Forestry 7(2): 75–84. DOI: 10.3832/ifor0909-007.

Maryniak D., Drzewiecki W., 2010. The Błędów Desert Land Cover Change in the Years 1926–2005. Archives of Photogrammetry, Cartography and Remote Sensing 21: 245–256.

Moskal L.M., Jakubauskas M., 2013. Monitoring Post Disturbance Forest Regeneration with Hierarchical Object-Based Image Analysis. Forests 4(4): 808–829. DOI: 10.3390/f4040808.

Rahmonov O., Szczypek T., Wach J., 2006. The Błędów Desert (Pustynia Błędowska) – a unique phenomenon of the Polish landscape. Annales Geographicae 39(1): 34–41.

Singh K.K., Vogler J.B., Shoemaker D.A., Meentemeyer R.K., 2012. LiDAR-Landsat Data Fusion for Large-Area Assessment of Urban Land Cover: Balancing Spatial Resolution, Data Volume and Mapping Accuracy. ISPRS Journal of Photogrammetry and Remote Sensing 74 (November): 110–21. DOI: 10.1016/j.isprsjprs.2012.09.009.

Suzanchi K., Kaur R., 2011. Land Use Land Cover Change in National Capital Region of India: A Remote Sensing & GIS Based Two Decadal Spatial-Temporal Analyses. Procedia – Social and Behavioral Sciences 21: 212–221. DOI: 10.1016/j.sbspro.2011.07.044.

Szczypek T., Wach J.S.W., 1994. Changes in Błędów Desert Landscapes. WNoZ UŚ: Sosnowiec.

Szostak M., Wężyk P., Tompalski P., 2014. Aerial Orthophoto and Airborne Laser Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the Milicz Forest District (Poland). Pure and Applied Geophysics 171(6): 857–866. DOI: 10.1007/s00024-013-0668-8.

Wężyk P., de Kok R., 2005. Automatic Mapping of the Dynamics of Forest Succession on Abandoned Parcels in South Poland. In: Strobl et al. (eds), Angewandte Geoinformatik. Herbert Wichman Verlag, Heidelberg: 774–779.

Wężyk P., Szostak M., Tompalski P., 2013. Use of Airborne Laser Scanning Data for a Revision and Update of a Digital Forest Map and Its Descriptive Database: A Case Study from the Tatra National Park. In: Kozak J., Katarzyna O., Bytnerowicz A., Wyżga B. (eds), The Carpathians: Integrating Nature and Society Towards Sustainability. Springer: 615–627.

Willhauck G., Schneider T., de Kok R., Ammer U., 2000. Comparison of Object Oriented Classification Techniques and Standard Image Analysis for the Use of Change Detection between SPOT Multispectral Satellite Images and Aerial Photos. ISPRS Archives 33 (Supplement B3): 214–221.