IMPACTS OF GEOMORPHIC DISTURBANCES ON PLANT COLONIZATION IN EBBA VALLEY, CENTRAL SPITSBERGEN, SVALBARD

Main Article Content

Monika Stawska

Abstract

Global warming observed nowadays causes an increase in geomorphic activity in polar regions. Within the areas influenced by cold climatic conditions, relief dynamics and vegetation development are the main landscape shaping processes. The study is limited to the Ebba Valley (78°43’N; 16°37’E) in central Spitsbergen (Svalbard), where geomorphologic observations and vegetation sampling were conducted in 2007. The valley was divided into three zones differentiated by dominating geomorphic activity and stability of deposits. The settlement and the evolution of plant cover have been documented there. The main factors that control well developed vegetation cover within raised marine terraces are frost heave and solifluction. In deeper parts of the valley, aeolian processes dominate and high differentiation of microsite conditions causes high variability in plant coverage. The area close to the Ebba glacier marginal zone is characterized by initial stages of plant colonisation where disturbance to vegetation is mainly caused by hydrological processes.

Downloads

Download data is not yet available.

Article Details

How to Cite
Stawska, M. (2017). IMPACTS OF GEOMORPHIC DISTURBANCES ON PLANT COLONIZATION IN EBBA VALLEY, CENTRAL SPITSBERGEN, SVALBARD. Quaestiones Geographicae, 36(1), 51-64. https://doi.org/10.1515/quageo-2017-0004
Section
Articles

References

  1. ACIA, 2004. Arctic climate impact assessment. Cambridge University Press, Cambridge, UK, Impact of a Warming Arctic.
  2. Anderson D.G., Bliss L.C., 1998. Association of plant distribution patterns and microenvironments on patterned ground in a Polar Desert, Devon Island, N.W.T., Canada. Arctic and Alpine Research 30: 97–107.
  3. Braun-Blanquet J., 1964. Pflanzensoziologie. Springer Verlag, Wien, New York.
  4. Buchwał A., Rachlewicz G., Fonti P., Cherubini P., Gärtner H., 2013. Temperature modulates intra-plant growth of Salix polaris from a high Arctic site (Svalbard). Polar Biology 36: 1305–1318.
  5. Cannoe N., Guglielmin M., Gerdol R., 2004. Relationships between vegetation patterns and periglacial landforms in northwestern Svalbard. Polar Biology 27: 562–571.
  6. Chapin F.S., Sturm M., Serreze M.C., McFadden J.P., Key J.R., Lloyd A.H., McGuire A.D., Rupp T.S., Lynch A.H., Schimel J.P., Beringer J., Chapman W.L., Epstein H.E., Euskirchen E.S., Hinzman L.D., Jia G., Ping C.L., Tape K.D., Thompson C.D.C., Walker D.A., Welker J.M., 2005. Role of land-surface changes in Arctic summer warming. Science 310: 657–660. doi:10.1126/science.1117368
  7. Chapin F.S., Walker L.R, Fastie CH.L, Sharman L.C., 1994. Mechanisms of Primary Succession Following Deglaciation at Glacier Bay, Alaska. Ecological Monographs 64(2): 149–175.
  8. Churchill E.D., Hanson H.C., 1958. The concept of climax in arctic and alpine vegetation. Botanical Review 24: 127–191.
  9. Connell J.H., Slayter R.O., 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111: 1119–1144.
  10. Cooper E.J, Alsos I.G., Hagen D., Smith F.M., Coulson S.J., Hodkinson I.D., 2004. Plant recruitment in the High Arctic: Seed bank and seedling emergence on Svalbard. Journal of Vegetation Science 15: 115–224.
  11. Dallmann W.K., Piepjohn K., Blomeier D., 2004. Geological map of Billefjorden, central Spitsbergen, Svalbard, with geological excursion guide. Norsk Polarinstitutt Temakart 36. Tromsø: Norwegian Polar Institute.
  12. Elvebakk A., 1999. Bioclimate delimitation and subdivisions of the Arctic. In: I. Nordal, V.Y. Razzhivin (eds) The species concept in the high north – A panarctic flora initiative. The Norwegian Academy of Science and Letters: 81–112.
  13. Elven R., Elvebakk A. 1996. Vascular plants. In: A. Elvebakk, P. Prestrud (eds) A catalogue of Svalbard plants, fungi, algae and cyanobacteria. Norwegian Polar Institute, Oslo: 9–55.
  14. Fleming K.M., Dowdeswell J.A., Oerlemans J., 1997. Modelling the Mass Balance of Northwest Spitsbergen Glaciers and Responses to Climate Change. Annals of Glaciology 24: 203–210.
  15. Forbes B.C., Fauria M.M., Zetterberg P., 2010. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biology 16: 1542–1554. doi:10.1111/j.1365-2486.2009.02047.x
  16. Hodkinson I.D., Coulson S.J., Webb N.R., 2003. Community assembly along proglacial chronosequences in the high Arctic: vegetation and soil development in north – west Svalbard. Journal of Ecology 91: 651–663.
  17. IPCC, 2013: Vaughan D.G., Comiso J.C., Allison I., Carrasco J., Kaser G., Kwok R., Mote P., Murray T., Paul J., Ren J., Rignot E., Solomina O., Steffen K., Zhang T. Observations: Cryosphere. In: T.F. Stocker, D. Qin, G.- K. Plattner, M.Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA: 317–382.
  18. Jenny H., 1980. The soil resource: Origin and behaviour. Springer Verlag, New York.
  19. Jones G.A., Henry G.H.R., 2003. Primary plant succession on recently deglaciated terrain in the Canadian High Arctic. Journal of Biogeography 30(2): 277–296.
  20. Jónsdóttir I.S., 2005. Terrestrial ecosystems on Svalbard: heterogeneity, complexity and fragility from an Arctic island perspective. Biological Environment: Proceedings of the Royal Irish Academy 105B: 155–165.
  21. Jumpponen A., Väre H., Mattson K.G., Ohtonen R., Trappe J.M., 1999. Characterisation of safe sites for pioneers in primary succession on recently deglaciated terrain. Journal of Ecology 87: 98–105.
  22. Kłysz P., 1985. Glacial relief and deposits of Ebba Glacier and its foreland (Petuniabukta region, Spitsbergen). Polish Polar Research 6(3): 283–299.
  23. Kłysz P., Lindner L., Marks L., Wysokiński L., 1989. Late pleistocene and holocene relief modelling in the Ebbadalen – Nordenskjöldbreen region in Olav V Land, Central Spitsbergen. Polish Polar Research 10(3): 277–301.
  24. Kojima S., Wada N., 1999. Ecological characterization of some selected vascular species in the arctic environment of Ny – Ålesund, Svalbard, in relation to soil moisture conditions. Polar Bioscience 12: 76–86.
  25. Komárková V., 1993. Vegetation type hierarchies and landform disturbance in arctic Alaska and alpine Colorado with emphasis on snowpatches. Vegetatio 106: 155–181.
  26. Kostrzewski A., Kaniecki A., Kapuściński J., Klimczak R., Stach A., Zwoliński Zb., 1989. The dynamics and rate of denudation of a glaciated and an unglaciated catchments, Central Spitsbergen. Polish Polar Research 10(3): 317–367.
  27. Kostrzewski A., Mizgajski A., Zwolinski Zb., 2006. Typology of Cross-Boundary Fluxes of Mineral Matter Between Geoecosystems of Ebbadalen, Central Spitsbergen. Fourth ESF SEDIFLUX Science Meeting and First Workshop of I.A.G./A.I.G. SEDIBUD, Trondheim: 52.
  28. Kume A., Nakatsubo T., Bekku Y., Masuzawa T., 1999. Ecological significance of different forms of purple saxifrage, Saxifraga oppositifolia L., in the high arctic, Ny-Ålesund, Svalbard. Arctic, Antarctic and Alpine Research 31(1): 27–33.
  29. Long, A.J, Strzelecki, M.C., Lloyd, J.M., Bryant, C., 2012. Dating High Arctic Holocene relative sea level changes using juvenile articulated marine shells in raised beaches. Quaternary Science Reviews 48: 61–66.
  30. Marcante S., Winkler E., Erschbamer B., 2009. Population dynamics along a primary succession gradient: do alpine species fit into a demographic succession theory? Annals of Botany 103(7): 1129–1143.
  31. Matthews J.A., 1978. Plant colonisation patterns on a gletschervorfeld, southern Norway: a meso-scale geographical approach to vegetation change and phytometric dating. Boreas 7: 155–178.
  32. Matthews J.A., 1992. The Ecology of Recently Deglaciated Terrain: A Geo-ecological Approach to Glacier Forelands and Primary Succession. Cambridge University Press, Cambridge.
  33. Mazurek M., Paluszkiewicz R., Rachlewicz G., Zwoliński Zb., 2012. Variability of Water Chemistry in Tundra Lakes, Petuniabukta Coast, Central Spitsbergen, Svalbard. TheScientificWorldJournal: 1–13. doi:10.1100/2012/596516.
  34. Mercier D., Étienne S., Sellier D., André M.-F., 2009. Paraglacial gullying of sediment mantled slopes: a case study of Colletthøgda, Kongsfjorden area, West Spitsbergen (Svalbard). Earth Surface Processes and Landforms 34(13): 1772–1789.
  35. Moreau M., Laffly D., Joly D., Brossard T., 2005. Analysis of plant colonisation on an arctic moraine since the end of the Little Ice Age using remotely sensed data and a Bayesian approach. Remote Sensing of Environment 99(3): 244–253.
  36. Moreau M., Mercier D., Laffly D., Roussel E., 2008. Impacts of recent paraglacial dynamics on plant colonization: A case study on Midtre Lovénbreen foreland, Spitsbergen (79°N). Geomorphology 95: 48–60.
  37. Natali S.M., Schuur E.A.G., Rubin R.L., 2012. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. Journal of Ecology 100: 488–498.
  38. Nordli Ø., Przybylak R., Ogilvie A., Isaksen K., 2014. Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898–2012. Polar Research 33, doi: 10.3402/polar.v33.21349.
  39. Ohtsuka T., Adachi M., Uchida M., Nakatsubo T., 2006. Relationships between vegetation types and soil properties along a topographical gradient on the northern coast of the Brøgger Peninsula, Svalbard. Polar Bioscience 19: 63–72.
  40. Pickett S.T.A., 1989. Space-for-time substitution as an alternative to long-term studies. In: Likens, G.E. (ed.) Long-term studies in ecology. Springer, New York, US, 110–135.
  41. Pirożnikow E., 1996. Strategie adaptacyjne roślin w warunkach pustyń arktycznych. Białystok 1996.
  42. Prach K., Rachlewicz G., 2012. Succession of vascular plants in front of retreating glaciers in central Spitsbergen. Polish Polar Research 33(4): 319–328.
  43. Prach K., Klimešová J., Košnar J., Redčenko O., Hais M., 2012. Variability of contemporary vegetation around Petuniabukta, central Spitsbergen. Polish Polar Research 33(4): 383–394.
  44. Rachlewicz G., 2003. Warunki meteorologiczne w zatoce Petunia (Spitsbergen środkowy) w sezonach letnich 2000 i 2001. Problemy Klimatologii Polarnej 13: 127–138.
  45. Rachlewicz G., Kostrzewski A., Marciniak M., Szpikowski J., Zwoliński Zb., 2012. The function of contemporary physical geography processes in polar regions. In: P.Churski (ed.), Contemporary Issues in Polish Geography, Bogucki Wydawnictwo Naukowe, Poznań: 95–110.
  46. Rachlewicz G., Styszyńska A., 2007. Porównanie przebiegu temperatury powietrza w Petuniabukta i Svalbard-Lufthavn (Isfjord, Spitsbergen) w latach 2001–2003. Problemy Klimatologii Polarnej 17: 121–134.
  47. Rachlewicz G., Szczuciński W., 2008. Changes in permafrost active layer thermal structure in dry polar climate (Petuniabukta, Svalbard). Polish Polar Research 29(3): 261–278.
  48. Rachlewicz G., Szczuciński W., 2013. Raised marine terraces in the vicinity of the north part of Billefjorden. In: Zwoliński Z., Kostrzewski A., Pulina M. (eds.) Ancient and modern geoecosystems of Spitsbergen – Polish geomorphological research. Bogucki Wydawnictwo Naukowe, 379–389.
  49. Rachlewicz G., Szczuciński W., Ewertowski M., 2007. Post „Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research 28(3): 159–186.
  50. Rachlewicz G., Szpikowska G., Szpikowski J., Zwoliński Zb., 2016. Solute and particulate fluxes in catchments in Spitsbergen. In: Beylich A.A., Dixon J.C., Zwoliński Zb., Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge University Press: 133–143.
  51. Rachlewicz G., Zwoliński Zb., Kostrzewski A., Birkenmajer K., 2013. Geographical environment in the vicinity of the Adam Mickiewicz University in Poznań Polar Station – Petuniabukta. In: Zwoliński Zb., Kostrzewski A., Pulina M., (eds.), Ancient and modern geoecosystems of Spitsbergen. Polish geomorphological research. Bogucki Wydawnictwo Naukowe, Poznań: 199–237.
  52. Raffl C., Marcante S., Erschbamer B., 2006. The role of spontaneous selfing in the pioneer species Saxifraga aizoides. Flora 202: 128–132.
  53. Robotnov T.A., 1964. Determination of age composition of species populations in a community. Polevaya Geobotanika 3: 132–208 (in Russian).
  54. Rydgren K., Halvorsen R., Töpper J.P, Njøs J.M., 2014. Glacier foreland succession and the fading effect of terrain age. Journal of Vegetation Science 25: 1367–1380
  55. Rønning O. I., 1996. The flora of Svalbard. Norsk Polarinstitutt, Oslo.
  56. Saville D.B.O., 1964: General ecology and vascular plants of the Hazen Camp area. Arctic 17: 237–258.
  57. Schweingruber F.H., Poschlod P., 2005. Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow and Landscape Research 79: 195–415.
  58. Scurfield G., 1973. Reaction wood: its structure and function. Science 179: 647–655.
  59. Svoboda J., Henry G.H.R., 1987. Succession in marginal arctic environments. Arctic and Alpine Research 19(4): 373–384.
  60. Szpikowski J., Szpikowska G., Zwoliński Z., Rachlewicz G., Kostrzewski A., Marciniak M., Dragon K., 2014. Character and rate of denudation in a High Arctic glacierized catchment (Ebbaelva, Central Spitsbergen). Geomorphology 218: 52–62.
  61. Tishkov A.A., 1986: Primary succession in arctic tundra on the west coast of Spitsbergen (Svalbard). Polar Geography and Geology 10: 148–156.
  62. van der Meij W.M., Temme A.J.A.M., de Kleijn C.M.F.J.J., Reimann T., Heuvelink G.B.M., Zwoliński Zb., Rachlewicz G., Rymer K., Sommer M., 2016. Arctic soil development on a series of marine terraces on Central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach. SOIL 2: 221–240.
  63. Zoltai S.C., 1975. Tree ring record of soil movements on permafrost. Arctic and Alpine Research 7(4): 331–340.
  64. Zwoliński Zb., 2007. Mobilność materii mineralnej na obszarach paraglacjalnych, Wyspa Króla Jerzego, Antarktyka Zachodnia. Wydawnictwo Naukowe UAM, Ser. Geografia 74: 1–266.
  65. Zwoliński Zb., Dobiński W., 2008. Recesja lądolodów i lodowców oraz degradacja wieloletniej zmarzliny. Kosmos 57(3–4): 209–224.
  66. Zwoliński Z., Kostrzewski A., Rachlewicz G., 2008a. Environmental Changes in the Arctic. In: Singh S., Starkel L., Syiemlieh H.J. (eds) Environmental Changes and Geomorphic Hazards. Bookwell, Delhi, India: 23–36.
  67. Zwoliński Z., Mazurek M., Paluszkiewicz R., Rachlewicz G., 2008b. The matter fluxes in geoecosystem of small tundra lakes, Petuniabukta coast, Billefjorden, Central Spitsbergen. Zeitschrift fur Geomorphologie 52(1): 79–101.
  68. Whittaker R.H., 1989. The vegetation of the Storbreen gletshervorfeld, Jotunheimen, Norway. III. Vegetation-environment relationships. Journal of Biogeography 16: 413–433.