Category Theory In Geography?
PDF

Keywords

category theory
mathematics
geography
Geographic Information Systems
web mapping
commutative diagrams

How to Cite

Arlinghaus, S. L., & Kerski, J. (2015). Category Theory In Geography?. Quaestiones Geographicae, 34(4), 61–68. https://doi.org/10.1515/quageo-2015-0036

Abstract

Is mathematical category theory a unifying tool for geography? Here we look at a few basic category theoretical ideas and interpret them in geographic example. We also offer links to indicate how category theory has been used as such in other disciplines. Finally, we announce the direction of our research program on this topic as a way to facilitate the learning, and maintenance of learning, of GIS software – and in the spirit of Quaestiones Geographicae, invite debate, comment, and contribution to this program in spatial mathematics.

https://doi.org/10.1515/quageo-2015-0036
PDF

References

Albrecht J.H., 1999. Universal GIS operations for environmental modeling. http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/jochen_albrecht/jochen.santafe.html.

Arlinghaus S., 2001. Buffers, bisectors, and base maps. Solstice: An Electronic Journal of Geography and Mathematics XII(2). http://www-personal.umich.edu/~copyrght/image/solstice/win01/sarhaus/

Arlinghaus S., Kerski J., 2013. Spatial mathematics: Theory and practice through mapping. CRC Press / Taylor & Francis, Boca Raton.

Baez J.C., 2006. Quantum quandaries: A category-theoretic perspective. In: French S., Rickles D., Saatsi J. (eds), Structural foundations of quantum gravity. Oxford University Press: 240–265. http://math.ucr.edu/home/baez/quantum/node1.html.

Baez J.C., 2014. Azimuth. Category theory for better spreadsheets. http://johncarlosbaez.wordpress.com/2014/02/05/category-theory-for-better-spreadsheets/

Barr M., Wells C., 1998. Category theory for computing science. http://www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf.

Blass A., 1984. The interaction between category theory and set theory. Contemporary Mathematics 30: 5–29.

Brassel K.E., Reif D., 1979. A procedure to generate Thiessen polygons. Geographical Analysis 11(3): 289–303.

Coxeter H.S.M., 1961, Introduction to geometry. MacMillan, New York.

Easterbrook S., 1999. Category theory for beginners. University of Toronto, Department of Computer Science. http://www.cs.utexas.edu/users/ham/richards/FP%20papers/cat101.pdf.

The Economist, May 15, 2003. http://www.economist.com/node/1788311

Eilenberg S., Mac Lane S., 1945. General theory of natural equivalences. http://www.ams.org/journals/tran/1945-058-00/S0002–9947–1945-0013131–6/S0002–9947–1945-0013131–6.pdf

Kopec R.J., 1963. An alternative method for the construction of Thiessen polygons. Professional Geographer 15(5): 24–26.

Lightfoot C., 2003. Cartography for fun and profit. http://ex-parrot.com/~chris/wwwitter/20030506.html.

Mac Lane S., 1971. Category theory for the working mathematician. Springer-Verlag, New York.

Mark D.M., Smith B., 2003. Geographic categories: An ontological investigation. http://www.ncgia.buffalo.edu/ontology/

Qi F., Zhu A-X., Harrower M., Burt J.E., 2006. Fuzzy soil mapping based on prototype category theory. Geoderma 136, 774–787. http://www.lreis.ac.cn/sc/faculty/zhu_axing-DGPM-netpage/doc/new/p_Fuzzy%20soil%20mapping%20based%20on%20prototype%20category%20theory-Qi06.pdf.

Rhynsburger D., 1973. Analytic delineation of Thiessen polygons. Geographical Analysis 5: 133–144.

The n-Category Café. March 3, 2013. Spivak on category theory. http://golem.ph.utexas.edu/category/2013/03/spivak_on_category_theory.html

Thiessen A.H., Alter J.C., 1911. Climatological data for July, 1911: District No. 10, Great Basin. Monthly Weather Review, July: 1082–1089.

US Census Bureau, June 10, 2014. Story maps illustrate metro area and county population change. http://www.census.gov/dataviz/visualizations/maps/?eml=gd&utm_medium=email&utm_source=govdelivery

Voronoi G., 1908. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik 133: 97–178.

Wolfram MathWorld, 2014. Five Lemma. http://mathworld.wolfram.com/FiveLemma.html