Response of the Danube River Floodplain to Flood Events During 2002-2007 Period
PDF

Keywords

the Danube River
flood record
grain-size data
vertical accretion
floodplain facies

How to Cite

Lehotský, M., Novotný, J., & Szmańda, J. (2010). Response of the Danube River Floodplain to Flood Events During 2002-2007 Period. Quaestiones Geographicae, 29(3), 37–45. https://doi.org/10.2478/v10117-010-0021-6

Abstract

The relationship between floods and their geomorphic effect is discussed in this article. Almost every flood event is registered in overbank alluvia. We investigated sediment structures and textures as a response to three flood events occurred during 2002-2007 period on the Danube River floodplain in Bratislava. The change in sedimentation is the effect of floodwater flow energy changeability in the channel and floodplain. Generally, three main phases of energy flow changes of floods are recognised and thus the complete flood record can be expressed as the set of three layers. We also analysed conditions of the overbank sedimentation based on the shape and size of sedimented particles. Results show a relatively high variability of sedimentation processes during floods. The total amount of new overbank sediment accumulated in the 2002-2007 period, its texture characteristics and spatial distribution do not depend only on flood discharge, but also on the drainage basin sources of floodwater and sediment.

https://doi.org/10.2478/v10117-010-0021-6
PDF

References

Allen J. R. L., 1965. A review of the origin and characteristic of recent alluvial sediments. Sedimentology 5(2): 89-191.

Allen J. R. L., 1968. The nature and origin of bed-form hierarchies. Sedimentology 10(3): 161-182.

Allen J. R. L., 1970. Physical processes of sedimentation. London, G. Allen & Unwin University Books: 248 pp.

Antczak B., 1985. Rhythmites on lower terraces of the Warta River, Poland, and their paleohydrologic implications. Questiones Geographicae, Special Issue 1: 31-43.

Ashley G. M., 1990. Classification of large-scale subaqueous bedforms: a new look at an old problem. Journal of Sedimentary Petrology/Journal of Sedimentary Research 60(1): 161-172.

Baas J. H., 1994. A flume study on the development and equilibrium morphology of current ripples in very fine sand. Sedimentology 41(2): 185-209.

Baba J. & Komar P. D., 1981. Measurement and analysis of settling velocities of natural quartz sand grain. Journal of Sedimentary Petrology/Journal of Sedimentary Research 51(2): 631-640.

Blott S. J. & Pye K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26(11): 1237-1248.

Bouma A. H., 1962. Sedimentology of Some Flysch Deposits, A Graphic Approach to Facies Interpretation. Amsterdam, Elsevier: 168 pp.

Braithwaite C. J. R., 1973. Settling behaviour related to sieve analysis of skeletal sands. Sedimentology 20(2): 251-262.

Bridge J. S., 2003. Rivers and floodplains, Form, Processes and Sedimentary Record. Oxford, Blackwell Publishing Company: 486 pp.

Brierley G. J., 1991. Floodplain sedimentology of the Squamish River, British Columbia: relevance of element analysis. Sedimentology 38(4): 735-750.

Cheng N. S., 1997. Simplified settling velocity formula for sediment particle. Journal of Hydraulic Engineering 123(2): 149-152.

Chien N. & Wan Z., 1983. Mechanics of Sediment Motion (in Chinese). Beijing, Science Press.

Chiew Y. M., 1991. Bed features in nonuniform sediments. Journal of Hydraulic Engineering 117(1): 116-120.

Ciupa T., 1991. Współczesny transport fluwialny w zlewni Białej Nidy. Kielce: Wydawnictwo Wyżej Szkoły Pedagogicznej im. Jana Kochanowskiego: 156 pp.

Costa J. E., 1983. Paleohydraulic reconstructions of flash-flood peaks from boulder deposits in the Colorado Front Range. Geological Society of America Bulletin 94(8): 986-1004.

Farrell K. M., 2001. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits. Cumberland Marshes, Saskatchewan. Sedimentary Geology 139(2): 93-150.

Ferguson R. I. & Church M., 2004. A simple universal equation for grain settling velocity. Journal of Sedimentary Research 74(6): 933-937.

Folk R.L & Ward W. C., 1957. Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Petrology/Journal of Sedimentary Research 27(1): 3-26.

Friedman G.M & Sanders J. E., 1978. Principles of Sedimentology. New York, Wiley: 792 pp.

Hjulström F., 1935. Studies of the morphological activity of rivers as illustrated by the river Fyris. University of Uppsala Geological Institute Bulletin 25: 221-557.

Klimek K., 1974. The structure and mode of sedimentation of the flood-plane deposits in the Wisłoka valley (South Poland). Studia Geomorphologica Carpatho-Balcanica 8: 136-151.

Koster E. H., 1978. Transverse ribs: their characteristics, origin, and paleohydrologic significance. In Miall A. D. (ed.) Fluvial sedimentology. Canadian Society of Petroleum Geologists Memoir 5: 161-186.

Le Roux J. P., 2002. Shape Entropy and Settling Velocity of Natural Grains. Journal of Sedimentary Research 72(3): 363-366.

Mansfield G. R., 1938. Flood deposit of Ohio River January - February 1937 - a study of sedimentation. U. S. Geological Survey Water-Supply Paper 838: 693-733.

Maroulis J. C. & Nanson G. C., 1996. Bedload transport of aggraded muddy from Cooper Creek, central Australia, a flume study. Sedimentology 43(5): 771-790.

Mazumder B. S., 1994. Grain size distribution in suspension from bed materials. Sedimentology 41(2): 271-277.

McLaren P. & Bowles D., 1985. The effects of sediment transport on grain-size distributions. Journal of Sedimentary Petrology/Journal of Sedimentary Research 55(4): 457-470.

Miall A. D., 1996. The Geology of Fluvial Deposits. Berlin - Heidelberg - New York, Springer-Verlag: 582 pp.

Miller M. C., McCave I. N. & Komar P. D., 1977. Threshold of sediment motion under unidirectional currents. Sedimentology 24(4): 507-527.

Morris W. J., 1957. Effects of sphericity, roundness, and velocity on traction transportation of sand grains. Journal of Sedimentary Petrology/Journal of Sedimentary Research 27(1): 27-31.

Novotný J., Lehotský M. & Grešková A., 2007. Súčasný morfologický vývoj medzihrádzového priestoru (Dunaj, Bratislava). Geomorphologia Slovaca et Bohemica 7(2): 72-78.

O'Connor J. E., 1993. Hydrology, hydraulics, and geomorphology of the Bonneville flood. Geological Society of America Special Paper 274: 83 pp.

Pettijohn F. J., 1957. Sedimentary rocks. New York, Harper: 718 pp.

Pišút P., 2002. Channel evolution of the pre-channelized Danube River in Bratislava, Slovakia (1712 - 1886). Earth Surface Processes and Landforms 27(4): 369-390.

Poole D. M., 1957. Size analysis of sand by a sedimentation technique. Journal of Sedimentary Petrology/Journal of Sedimentary Research 27(4): 460-468.

Rees A. I., 1966. Some flume experiments with a fine silt. Sedimentology 6(3): 209-240.

Ruby W., 1933. Settling velocities of gravel, sand and silt particles. American Journal of Science 25: 325-338.

Southard J. B. & Boguchwall L. A., 1990. Bed configuration in steady unidirectional water flows; Part 2, Synthesis of flume data. Journal of Sedimentary Petrology/Journal of Sedimentary Research 60(5): 658-679.

Spencer D. W., 1963. The interpretation of grain size distribution curves of clastic sediments. Journal of Sedimentary Petrology/Journal of Sedimentary Research 33(1): 180-190.

Sundborg Å., 1956. The River Klarälven: A Study of Fluvial Processes. Geografiska Annaler 38(2): 125-237.

Sundborg Å., 1967. Some Aspects on Fluvial Sediments and Fluvial Morphology I. General Views and Graphic Methods. Geografiska Annaler, Series A, Physical Geography 49A(2-4 Landscape and Processes: Essays in Geomorphology): 333-343.

Svoboda A., Pekárová P. & Miklánek P., 2000. Flood hydrology of Danube between Devín and Nagymaros. Bratislava: Institute of Hydrology SAS: 96 pp.

Szmańda J. B., 1998. Aluwia wybranych obszarów równin zalewowych Drwęcy i Tążyny w świetle analiz teksturalnych. In Pękala K. (ed.) Główne kierunki badań geomorfologicznych w Polsce stan aktualny i perspektywy. Referaty i komunikaty, IV Zjazd Geomorfologów Polskich. Lublin: Wyd. UMCS: 185-190.

Szmańda J. B., 2004. Znaczenie materiału źródłowego i transportu ziaren w akumulacji powodziowej - studium przypadku - aluwia pozakorytowe Wisły, Drwęcy i Tążyny. Prace Geograficzne 200: 355-372.

Szmańda J. B., 2006. Rytmika powodziowa w aluwiach pozakorytowych Wisły, Drwęcy i Tążyny. [Flood rhytmicity in the Vistula, Drwęca and Tążyna rivers valley overbank deposits]. Dokumentacja Geograficzna (Instytut Geografii i Przestrzennego Zagospodarowania, Polska Akademia Nauk) 32: 266-270.

Udden J. A., 1914. Mechanical composition of clastic sediments. Geological Society of America Bulletin 25: 655-744.

Wang S., Li J. & Yin S., 2000. Basic characteristics and controlling factors of anastomosing fluvial systems. Chinese Geographical Science 10(1): 30-37.

Wentworth C. K., 1922. A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology 30(5): 377-392.

Williams G. P., 1983. Paleohydrological Methods and Some Examples from Swedish Fluvial Environments. I. Cobble and Boulder Deposits. Geografiska Annaler. Series A, Physical Geography 65A(3-4): 227-243.

Zwoliński Z., 1992. Sedimentology and geomorphology of overbank flows on meandering river floodplains. Geomorphology 4(6): 367-379.