Geomorphological processes in channel heads initiated by groundwater outflows (The Parsęta catchment, north-western Poland)
PDF

Keywords

channel head
channel initiation
groundwater outflows
seepage erosion
Parsęta catchment

How to Cite

Mazurek, M. (2011). Geomorphological processes in channel heads initiated by groundwater outflows (The Parsęta catchment, north-western Poland). Quaestiones Geographicae, 30(3), 33–45. https://doi.org/10.2478/v10117-011-0025-x

Abstract

Channel initiation is caused by a combination of various hydrogeomorphic processes. In the humid temperate zone of the Polish Plain, in areas with permeable deposits, seepage erosion is the primary mechanism of stream channel initiation. In the 24 channel heads selected in the southern part of the Parsęta catchment (NW Poland), the zones of occurrence of the following processes were identified: (1) seepage erosion; (2) falls, dry ravel events and slides; (3) creep, solifluction, surface runoff and erosion; (4) channel processes; and (5) landforms created under the impact of plants and animals. The co-occurrence of various morphogenetic processes produces variations in the accumulation conditions, and as a result, a diversity of deposits. Channel heads morphology shows the effect of the topography of the zero-discharge catchment, the type and magnitude of groundwater outflows, the variability of the geological structure, and the possibility of material being removed from the alcoves.

https://doi.org/10.2478/v10117-011-0025-x
PDF

References

Ahnert F., 1998. Introduction to geomorphology. Arnold, Londyn.

Baker V.R., 1990. Spring sapping and valley network development, with case study by Kochel R.C., Baker V.R., Laity J.E., Howard A.D. In: C.G. Higgins, D.R. Coates (eds.), Ground water geomorphology: The role of subsurface water in Earth-surface processes and landforms. Geol. Soc. Am., Spec. Paper 252: 235-290.

Banach M., 1977. Rozwój osuwisk na prawym zboczu doliny Wisły między Dobrzyniem a Włocławkiem (The growth of landslides on the right-bank slope of the Vistula Valley between Dobrzyń and Włocławek). Pr. Geogr. 124: 1-101.

Benda L., Hassan M.A., Church M. & May C.L., 2005. Geomorphology of steepland headwaters: the transition from hillslopes to channels. J. Am. Water Resour. Assoc. 41(4): 835-851.

Bujwid H. & Muchowski J., 1973. Rola naturalnego drenażu wód podziemnych w rozwoju morfologicznym krawędzi dolin rzecznych na przykładzie wybranych odcinków dolin: Wisły i dolnej Bugo-Narwi (Contribution of natural groundwater drainage in the morphological development of river valley margins on the example of some selected sections of the Vistula and Bugo-Narew river valleys). Przegl. Geol. 7: 396-400.

Churska Z., 1965. Późnoglacjalne formy denudacyjne na zboczach pradoliny Noteci-Warty i doliny Drwęcy (The late glacial denudative land forms occurring on the slopes of the Noteć-Warta ice-marginal streamway and the Drwęca valley). St. Soc. Scien. Torunensis, Sec. C, Geographia et Geologia 6: 1-112.

De Vries J.J., 1976. The groundwater outcrop-erosion model; evolution of the stream network in the Netherlands. J. Hydrol. 29: 43-50.

De Vries J.J., 1994. Dynamics of the interface between streams and groundwater systems in lowland areas, with references to stream net evolution. J. Hydrol. 155: 39-56.

Dietrich W.E. & Dunne T., 1993. The channel head. In: K. Beven, M.J. Kirkby (eds.), Channel network hydrology. Wiley, Chichester: 175-219.

Dunne T., 1980. Formation and controls of channel networks. Prog. Phys. Geog. 4: 211-239.

Gerlach T., 1966. Współczesny rozwój stoków w dorzeczu górnego Grajcarka (Beskid Wysoki - Karpaty Zachodnie) (Present-day slopes evolution in the upper Grajcarek catchment (High Beskid, Western Carpathians)). Pr. Geogr. IG PAN 52: 1-111.

Gomi T., Sidle R.C. & Richardson J.S., 2002. Understanding processes and downstream linkages of headwater systems. BioScience 52(10): 905-916.

Hack J.T. & Goodlet J.C., 1960. Geomorphology and forest ecology of a mountain region in the Central Appalachians. Washington (DC). U.S. Geol. Surv. Prof. Pap. 347: 1-66.

Higgins C.G., 1982. Drainage systems developed by sapping on Earth and Mars. Geology 10: 147-152.

Higgins C.G. & Coates D.R. (eds.), 1990. Groundwater geomorphology: The role of subsurface water in Earth-surface processes and landforms. Geol. Soc. Am. Spec. Pap. 252: 1-265.

Higgins C.G., 1984. Piping and sapping: Development of landforms by groundwater outflow. In: R.G. LaFleur (ed.), Groundwater as a geomorphic agent. Allen&Unwin, Boston: 18-58.

Howard A.D. & McLane C.F., 1988. Erosion of cohesionless sediment by groundwater seepage. Water Resour. Res. 24: 1659-1674.

Kostrzewski A. & Zwoliński Z., 1992. Udział denudacji chemicznej i mechanicznej we współczesnym systemie geomorficznym górnej Parsęty (Pomorze Zachodnie) (The contribution of chemical and mechanical denudation to the contemporary geomorphic system of the upper Parsęta river). Pr. Geogr. IGPZ PAN 155: 11-45.

Kostrzewski A., Zwoliński Z., Andrzejewski L., Florek W., Mazurek M., Niewiarowski W., Podgórski Z., Rachlewicz G., Smolska E., Stach A., Szmańda J. & Szpikowski J., 2008. Współczesny morfosystem strefy młodoglacjalnej (Present-day morphosystem of young glacial zone). Landform Analysis 7: 7-11.

Krzemiński T., 1989. Powiązanie form dolinnych środkowej Polski z obiegiem wody w małych zlewniach (The relationships of Central Polish valley forms to water cycle in small drainage basins). Acta Geographica Lodziensia 59: 95-119.

LaFleur R.G. (ed.), 1984. Groundwater as a geomorphic agent. Allen&Unwin, Boston.

Lawler D.M., 1993. Needle ice processes and sediment mobilization on river banks: the River Ilston, West Glamorgan, UK. J. Hydrol. 150: 81-114.

Lobkovsky A.E., Smith B.E., Kudrolli A., Mohrig D.C. & Rothman D.H., 2007. Erosive dynamics of channels incised by subsurface water flow. J. Geophys. Res. 112, F03S12.

Maksymiuk Z. & Moniewski S., 2000. Hydrologiczna i krajobrazowa rola źródeł małej zlewni w zachodniej części strefy krawędziowej Wzniesień Łódzkich (Hydrological and landscape role of the small drainage basin springs located in the western part of the Łódź Upland margin zone). Folia Geogr. Phys. 5: 67-81.

Mazurek M., 2006. Morphometric differences in channel heads in a postglacial zone (Parsęta catchment, West Pomerania). Questiones Geographicae 25(A): 39-47.

Mazurek M., 2010. Hydrogeomorfologia obszarów źródliskowych (dorzecze Parsęty, Polska NW) (Hydrogeomorphology of channel heads (the Parsęta drainage basin, NW Poland)). Seria Geografia 92: 1-308. Wyd. Naukowe UAM, Poznań.

Moniewski P., 2004. Źródła okolic Łodzi (Springs near Łódź). Acta Geogr. Lodziensia 87: 1-140.

Nash D.J., 1996. Groundwater sapping and valley development in the Hackness Hills, North Yorkshire, England. Earth Surf. Processes Landf. 21: 781-795.

Onda Y., 1994. Seepage erosion and its implication to the formation of amphitheatre valley heads: a case study at Obara, Japan. Earth Surf. Processes Landf. 19: 627-640.

Osadowski Z., Mazurek M. & Dobrowolski R., 2009. Structure and development conditions of spring mires in the Parsęta basin (Western Pomerania). In: A. Łachacz (ed.), Wetlands - their functions and protection. Department of Land Reclamation and Environmental Management, University of Warmia and Mazury in Olsztyn: 107-124.

Schumm S.A., Boyd K.F., Wolff C.G. & Spitz W.J., 1995. A ground-water sapping landscape in the Florida Panhandle. Geomorphology 12: 281-297.

Schumm S.A. & Phillips L., 1986. Composite channels of the Canterbury Plain, New Zealand: a Martian analog? Geology 14: 326-329.

Tanaka T., 1982. The role of subsurface water exfiltration in soil erosion processes. IAHS Publ. 137: 73-80.

Uchupi E. & Oldale R.N., 1994. Spring sapping origin of the enigmatic relict valleys of Cape Cod and Martha's Vineyard and Nantucket Islands, Massachusetts. Geomorphology 9: 83-95.

Younger P.L., 2007. Groundwater in the environment. An introduction. Blackwell Publishing, Oxford.