The influence of built environment and socio-economic factors on commuting energy demand. A path analysis-based approach
PDF

Keywords

Djelfa (Algeria)
energy consumption
path analysis
sensitivity analysis
commuting

How to Cite

Boukarta, S., & Berezowska-Azzag, E. (2022). The influence of built environment and socio-economic factors on commuting energy demand. A path analysis-based approach. Quaestiones Geographicae, 41(4), 19–39. https://doi.org/10.14746/quageo-2022-0039

Abstract

Transport is the second energy consumer sector after housing in Algeria. In this article, we explore the ener- gy implication of commuting by considering a panel of socio-economic (SE) and built environment (BE) driving factors. The method is based on four steps: (i) The first step is to identify the main and potential drivers from the literature review and to propose a model that summarises the main assumptions that could explain the volume of commuting and the resulting energy consumption. (ii) In the second step, we designed and distributed 700 questionnaires in the municipality of Djelfa and retained 184 valid questionnaires in the final study sample. (iii) In the third step, we developed a method adapted to urban areas to quantify energy consumption as a function of the distance travelled, the type and density of occupation by means of transport and the type of fuel. (iv) The fourth step is to check the fit of the hypothetical model with a path analysis-based approach. The model developed identifies 15 factors, of which five have a direct impact and 10 have an indirect impact on the energy consumption of commuting. The model shows that building density and the age of the respondent can reduce the energy consumption of commuting by up to −15% and

−12% respectively; whereas the number of cars by housing and the round-trip frequency could increase the energy consumption up to 38% and 27% respectively. Our results suggest a structuring role of the socio-economic characteristics of households in explaining the energy consumption of commuting.

https://doi.org/10.14746/quageo-2022-0039
PDF

References

Abouri R., Siagh H., 2016. Production de l'essence sans plomb par amélioration du procédé de reforming catalytique. Master Thesis, Kasdi Merbah University, Algeria.

Algerian accreditation body, 2016, Certificate of Accreditation N 1-2-016, Technical Annex, Algerac, Algeria.

APRUE, 2007. The National Agency for the Promotion and Rationalisation of Energy Use, Final consumption, key figures for 2005.

APRUE, 2014. The National Agency for the Promotion and Rationalisation of Energy Use, Final consumption, key figure for the year 2012.

APRUE, 2015. The National Agency for the Promotion and Rationalisation of Energy Use, The National Energy Situation, 2013 figures, 2015 edition.

APRUE, 2017. The National Agency for the Promotion and Rationalisation of Energy Use, The National Energy Situation, 2015 figures, 2017 edition.

Bakour M., 2016. La mobilité urbaine et la planification des réseaux de transport dans une logique de renouvellement urbain, le cas d'Alger. PHD thesis, EPAU, Algeria.

Boukarta S., 2019. Déterminants de la forme urbaine générant le potentiel de maîtrise de l'énergie en zone semi-aride. Application sur le cas de Djelfa en Algérie. PhD Dissertation, Ecole polytechnique d'architecture et d'urbanisme d'Alger, Algeria.

Boukarta S., Berezowska-Azzag E., 2018. Assessing household gas and electricity consumption, case study of Djelfa, Algeria. Quaestiones Geographicae 37(4): 111-129. DOI https://doi.org/10.2478/quageo-2018-0034 DOI: https://doi.org/10.2478/quageo-2018-0034

Boukarta S., Berezowska-Azzag E., 2020. Exploring the role of socio-economic and built environment driving factors in shaping the commuting modal share: A path-analysis-based approach. Quaestiones Geographicae 39(4): 87-107. DOI https://doi.org/10.2478/quageo-2020-0032 DOI: https://doi.org/10.2478/quageo-2020-0032

Boutaud Aurélien, Penser le changement ou changer le pansement. Dissertation thesis, 2005, Rochelle University, France.

Breheny M., 1995. The compact city and transport energy consumption. Transactions of the Institute of British Geographers: 20(1): 81-101. DOI https://doi.org/10.2307/622726 DOI: https://doi.org/10.2307/622726

Brownstone D., Golob T.F., 2008. The impact of residential density on vehicle usage and energy consumption. Journal of Urban Economics 65(1): 91-98. DOI https://doi.org/10.1016/j.jue.2008.09.002 DOI: https://doi.org/10.1016/j.jue.2008.09.002

Calabrese F., Diao M., Di Lorenzo G., Ferreira J. Jr., Ratti C., 2012. Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging Technologies 26: 301-313. DOI https://doi.org/10.1016/j.trc.2012.09.009 DOI: https://doi.org/10.1016/j.trc.2012.09.009

Cervero R., Kockelman K., 1997. Travel demand and the 3Ds: Density, diversity, and design. Transportation Research Part D: Transport and Environment 2: 199-219. DOI https://doi.org/10.1016/S1361-9209(97)00009-6 DOI: https://doi.org/10.1016/S1361-9209(97)00009-6

Cervero R., Murakami J., 2010. Effects of built environments on vehicle miles traveled: Evidence from 370 US urbanized areas. Environment and Planning A 42(2): 400-418. DOI https://doi.org/10.1068/a4236 DOI: https://doi.org/10.1068/a4236

Cervero R., Radisch C., 1995. Travel choices in pedestrian versus automobile oriented neighborhoods. Transport Policy 3(3): 127-141. DOI https://doi.org/10.1016/0967-070X(96)00016-9 DOI: https://doi.org/10.1016/0967-070X(96)00016-9

Chen C., Gong H., Paaswell R., 2007. Role of the built environment on mode choice decisions: Additional evidence on the impact of density. Transportation 35(3): 285-299. DOI https://doi.org/10.1007/s11116-007-9153-5 DOI: https://doi.org/10.1007/s11116-007-9153-5

Dargay J., 2004. The effect of prices and income on car travel in the UK. Transportation Research Part A: Policy and Practice 41(10): 949-960. DOI https://doi.org/10.1016/j.tra.2007.05.005 DOI: https://doi.org/10.1016/j.tra.2007.05.005

Dieleman F.M., Dijst M., Burghouwt G., 2002. Urban form and travel behaviour: Micro-level household attributes and residential context. Urban Studies 39(3): 507-527. DOI https://doi.org/10.1080/00420980220112801 DOI: https://doi.org/10.1080/00420980220112801

Ding C., Wang D., Liu C., Zhang Y., Yang J., 2017. Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance. Transportation Research Part A: Policy and Practice 100: 65-80. DOI https://doi.org/10.1016/j.tra.2017.04.008 DOI: https://doi.org/10.1016/j.tra.2017.04.008

Ewing R., Cervero R., 2002. Travel and the built environment: A synthesis. Transportation Research Record: Journal of the Transportation Research Board 1780: 87-114. DOI https://doi.org/10.3141/1780-10 DOI: https://doi.org/10.3141/1780-10

Ewing R., Cervero R., 2010. Travel and the built environment: A meta-analysis. Journal of the American Planning Association 76(3): 265-294. DOI https://doi.org/10.1080/01944361003766766 DOI: https://doi.org/10.1080/01944361003766766

Feng J., Dijst M., Prillwitz J., Wissink B., 2013. Travel time and distance in international perspective: A comparison between Nanjing (China) and the Randstad (The Netherlands). Urban Studies 50(14): 2993-3010. DOI https://doi.org/10.1177/0042098013482504 DOI: https://doi.org/10.1177/0042098013482504

Handy S., Cao X., Mokhtarian P., 2005. Correlation or causality between the built environment and travel behavior? Evidence from Northern California. Transportation Research Part D: Transport and Environment 10(6): 427-444. DOI https://doi.org/10.1016/j.trd.2005.05.002 DOI: https://doi.org/10.1016/j.trd.2005.05.002

Holden E., Norland I.T., 2005. Three challenges for the compact city as a sustainable urban form: Household consumption of energy and transport in eight residential areas in the greater Oslo region. Urban Studies 42(12): 2145-2166. DOI https://doi.org/10.1080/00420980500332064 DOI: https://doi.org/10.1080/00420980500332064

Hooper D., Coughlan J., Mullen M.R., 2008. Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business research methods 6(1): 53-60.

Hu L.T., Bentler P.M., 1999. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6(1): 1-55. DOI https://doi.org/10.1080/10705519909540118 DOI: https://doi.org/10.1080/10705519909540118

Iacobucci D., 2010. Structural equations modeling: Fit indices, sample size, and advanced topics. Journal of Consumer Psychology 20(1): 90-98. DOI https://doi.org/10.1016/j.jcps.2009.09.003 DOI: https://doi.org/10.1016/j.jcps.2009.09.003

Official Gazette (61), 2010. Law No. 10-02 approving the National Spatial Planning Scheme (SNAT 2030).

Karathodorou N., Graham D.J., Noland R.B., 2010. Estimating the effect of urban density on fuel demand. Energy Economics 32(1): 86-92.

DOI https://doi.org/10.1016/j.eneco.2009.05.005 DOI: https://doi.org/10.1016/j.eneco.2009.05.005

Khan M., Kockelman K.M., Xiong X., 2014. Models for anticipating non-motorized travel choices, and the role of the built environment. Transport Policy 35: 117-126. DOI https://doi.org/10.1016/j.tranpol.2014.05.008 DOI: https://doi.org/10.1016/j.tranpol.2014.05.008

Kitamura R., Mokhtarian P.L., Laidet L., 1997. A micro-analysis of land use and travel in five neighborhoods in the San Francisco Bay Area. Transportation 24(2): 125-158.

Kline R., 1998. Principles and practice of structural equation modeling. The Guilford Press, New York, NY.

Leslie K., Bolstein R., Crow M., 1965. Statistical formulas and citations for sample size and result analyzer. American Statistical 52(2): 41.

Limtanakool N., Dijst M., Schwanen T., 2006. The influence of socioeconomic characteristics, land use and travel time considerations on mode choice for medium-and longer-distance trips. Journal of Transport Geography 14(5): 327-341. DOI https://doi.org/10.1016/j.jtrangeo.2005.06.004 DOI: https://doi.org/10.1016/j.jtrangeo.2005.06.004

Ma J., Mitchell G., Heppenstall A., 2014. Daily travel behaviour in Beijing, China: An analysis of workers' trip chains, and the role of socio-demographics and urban form. Habitat International 43: 263-273. DOI https://doi.org/10.1016/j.habitatint.2014.04.008 DOI: https://doi.org/10.1016/j.habitatint.2014.04.008

Manaugh K., Miranda-Moreno L.F., El-Geneidy A.M., 2009. The effect of neighbourhood characteristics, accessibility, home-work location, and demographics on commuting distances. Transportation 37(4): 627-646. DOI https://doi.org/10.1007/s11116-010-9275-z DOI: https://doi.org/10.1007/s11116-010-9275-z

Manaugh K., Kreider T., 2013. What is mixed use? Presenting an interaction method for measuring land use mix. Journal of Transport and Land Use 6(1): 63-72. DOI https://doi.org/10.5198/jtlu.v6i1.291 DOI: https://doi.org/10.5198/jtlu.v6i1.291

Marique A.F., 2013. Méthodologie d'évaluation énergétique des quartiers périurbains. Perspectives pour le renouvellement périurbain wallon (Doctoral dissertation, Liège university, Belgique)

Marique A.F., Reiter S., 2012. A method for evaluating transport energy consumption in suburban areas. Environmental Impact Assessment Review 33(1): 1-6. DOI https://doi.org/10.1016/j.eiar.2011.09.001 DOI: https://doi.org/10.1016/j.eiar.2011.09.001

Matec, 2010. National Inventory of Greenhouse Gas Emissions for the year 2000.

MEAT, 2001. Development of the National Climate Change Strategy and Action Plan.

Muñiz I., Galindo A., 2005. Urban form and the ecological footprint of commuting. The case of Barcelona. Ecological Economics 55(4): 499-514. DOI https://doi.org/10.1016/j.ecolecon.2004.12.008 DOI: https://doi.org/10.1016/j.ecolecon.2004.12.008

Næss P., 2010. Residential location, travel, and energy use in the Hangzhou metropolitan area. Journal of Transport and Land Use 3(3): 27-59. DOI https://doi.org/10.5198/jtlu.v3i3.98 DOI: https://doi.org/10.5198/jtlu.v3i3.98

Naess P., 2014. Tempest in a teapot: The exaggerated problem of transport-related residential self-selection as a source of error in empirical studies. Journal of Transport and Land Use 7(3): 57-79. DOI https://doi.org/10.5198/jtlu.v7i3.491 DOI: https://doi.org/10.5198/jtlu.v7i3.491

Newman P.W.G., Kenworthy J.R., 1989. Cities and automobile dependence: An international sourcebook. Gower, Aldershot, UK.

Nguyen Q.S., 2014. Mobilités spatiales et ségrégation dans un contexte de métropolisation: Le cas de Hanoi. Phd Dissertation. Lyon 2 university.

Pan H., Shen Q., Zhang M., 2009. Influence of urban form on travel behaviour in four neighbourhoods of Shanghai. Urban Studies 46(2): 275-294. DOI https://doi.org/10.1177/0042098008099355 DOI: https://doi.org/10.1177/0042098008099355

Rogers R.G., Gumuchdjian P., 2008. Des Villes durables pour une petite planète. Ed Moniteur, France.

Schreiber J.B., Nora A., Stage F.K., Barlow E.A., King J., 2006. Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research 99(6): 323-338. DOI https://doi.org/10.3200/JOER.99.6.323-338 DOI: https://doi.org/10.3200/JOER.99.6.323-338

Stead D., 2001. Relationships between land use, socioeconomic factors, and travel patterns in Britain. Environment and Planning B: Planning and Design 28(4): 499-528. DOI https://doi.org/10.1068/b2677 DOI: https://doi.org/10.1068/b2677

Van Acker V., Witlox F., 2010. Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship. Journal of Transport Geography 18(1): 65-74. DOI https://doi.org/10.1016/j.jtrangeo.2009.05.006 DOI: https://doi.org/10.1016/j.jtrangeo.2009.05.006

Zhang Y., Wu W., Li Y., Liu Q., Li C., 2014. Does the built environment make a difference? An investigation of household vehicle use in Zhongshan metropolitan area, China. Sustainability 6(8): 4910-4930. DOI https://doi.org/10.3390/su6084910 DOI: https://doi.org/10.3390/su6084910