Biochemical characteristics of myofibrillar proteins of the fish parasite Isoparorchis hypselobagri (Trematoda) as survival traits in an oxygen-rich environment
PDF

Keywords

Isoparorchis hypselobagri
immunoprecipitation
natural actomyosin
contractility
myofibrillar ATPase
oxygen-rich environment
Wallago attu

How to Cite

Abbasi, U., Ahmad, R., & Hasnain, A.- ul. (2013). Biochemical characteristics of myofibrillar proteins of the fish parasite Isoparorchis hypselobagri (Trematoda) as survival traits in an oxygen-rich environment. Biological Letters, 49(1), 45–58. https://doi.org/10.2478/v10120-012-0009-0

Abstract

We have investigated biochemical properties of myofibrillar proteins of the digenetic trematode Isoparorchis hypselobagri, which correlate with its survival in the oxygen-rich swim bladder of its host catfish (Wallago attu). The polypeptide composition of the trematode’s natural actomyosin (NAM) was striated-muscle-like, with the exception that a 98-kD polypeptide corresponding to paramyosin also existed in its sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) profiles. The profiles of immunoprecipitated NAM of the trematode support these inferences. Ca2+-sensitivity of myofibrillar contractility and Mg2+-ATPase activity of I. hypselobagri resembled troponin-linked calcium regulation of the host striated muscle. Myofibrillar permeability to water influx was insensitive to calcium chelation at neutral pH. However, the host swim bladder myofibrils displayed smooth-muscle-like polypeptide composition, pH dependence of contractility, Ca2+-sensitivity, ATPase activities, and inactivation kinetics. We propose 2 survival strategies that I. hypselobagri appears to have co-evolved: (i) fast-muscle-like musculature with exceptionally high contractility or ATPase activity; and (ii) type-II myosin resembling the host muscle in functional plasticity.

https://doi.org/10.2478/v10120-012-0009-0
PDF

References

Ahmad R., Hasnain A. 2006. Correlation between biochemical properties and adaptive diversity of skeletal muscle myofibrils and myosin of some air-breathing teleosts. Ind. J. Biochem. Biophys. 43: 217-225.

App elt D., Shen V., Franzini-Amstrong C. 1991. Quantitation of Ca +ATPase, feet and mitochondria in super fast muscle fibers from the toadfish, Opsanus tau. J. Muscle. Res. Cell. Motil. 12: 543-552.

Arai K. 2002. Denaturation of muscular protein from marine animals and its control. Bull. Jap. Soc. Sci. Fish. (Nippon Suisan Gakkai-shi) 68: 137-143.

Chaparro-Olaya J., Margos G., Coles D. J., Dluzewski A. R., Wasserman M. M. Pinder J. C. 2005. Plasmodium falciparum myosins: transcription and translation during asexual parasite development. Cell. Motil. Cytoskel. 60: 2000-2002.

Cruz-Rivera M., Reyes-Torres A., Reynoso-Ducoing O., Flisser A., Ambrosio J. R. 2006. Comparison of biochemical and immunological properties of myosin II in Taeniid parasites. Cell. Biol. Internat. 30: 598-602.

Dobrowolski J. M., Carruthers V. B., Sibley L. D. 1997. Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol. Microbiol. 26: 163-173.

Field S. J., Pinder J. C., Clough B., Dluzewski A. R., Wilson R. J. M., Gratzer W. B. 1993. Actin in the merozoite of the malaria parasite, Plasmodium falciparum. Cell Motil. Cytoskel. 25: 43-48.

Gonzalez-Malerva L., Cruz-Rivera M., Reynoso-Ducoing O., Retamal C., Flisser A., Ambrosio J. R. 2004. Muscular myosin isoforms of Taenia solium (cestoda). Cell. Biol. Int. 28: 885-894.

Gornall G. A., Bardawill C. J., David M. 1949. Determination of Serum proteins by means of the Biuret reagent. J. Biol. Chem. 177: 751-766.

Heintzelman M. B. 2004. Actin and myosin in Gregarina polymorpha. Cell. Motil. Cytoskel. 58: 83-95.

Hooper S. L., Thuma J. B. 2005. Invertebrate muscles: muscle specific genes and proteins. Physiol. Rev. 85: 1001-1060.

Hooper S. L., Hobb s K. H., Thuma J. B. 2008. Invertebrate muscles: Thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog. Nerobiol. 86: 72-127.

Katta S. S., Sahasrabuddhe A. A., Gupta C. M. 2009. Flagellar localization of a novel isoform of myosin, myosin XXI in Leishmania. Mol. Biochem. Parsaitol. 164: 105-110.

Kiger L., Rashid K. A., Griff on N., Haque M., Moens L., Gibson O. H., Poyart C., Marden M. C. 1998. Trematode haemoglobin show exceptionally high oxygen affinity. Biophys. J. 75: 990-998.

Lehman W., Szent-Gyorgyi A. G. 1975. Regulation of muscular contraction: distribution of actincontrol and myosin-control in the animal kingdom. J. Gen. Physiol. 66: 1-30.

Macmanus D. P., Loukas A. 2008. Clinical Status of Vaccines for Schistosomiasis. Clin. Microbiol. Rev. 21: 225-242.

Oakley B. R., Kirsch D. R., Moriss N. R. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105: 361-363.

Pezzela-D’Alessandro N., Lemoal H., Bomhomme A., Valere A., Klein C. Gomez-Martin J., Pinon J. M. 2001. Calmodulin distribution and the actomyosin cytoskeleton in Toxoplasmagondii. J. Histochem. Cytochem. 49: 445-454.

Pinder J. C., Fowler R. E., Dluzewski A. R., Bannister L. H., Lavin F. M., Mitchell G. H., Wilson R. J. M., Gratzer W. B. 1998. Actomyosin motor in the merozoite of the malaria parasite, Plasmodium falciparum: implications for red cell invasion. J. Cell. Sci. 111: 1831-1839.

Rashid K. A., Hauwaert M. L., Haque M., Siddiqi A. H., Lasters I., Demaeyer M., Griff on N., Marden M. C., Dewilde S., Clauwaert J., Vinogradov S. N., Moens L. 1997. Trematode myoglobins, functional molecules with a distal tyrosine. J. Biol. Chem. 272: 2992-2999.

Sakamoto M., Arai K. 1979. A fundamental study on relationship between ATPase activity and contractile property of fish myofibrils. Bull. Jap. Soc. Sci. Fish. (Nippon Suisan Gakkai-shi) 45: 1575-1583.

Schmitz S., Schaap I. A., Kleinjung J., Harder S., Grainger M., Calder M., Calder L., Roswnthal P. B., Holder A. A., Veiger C. 2010. Malarial parasite actin polymerization and filament structure. J. Biol. Chem. 285: 36577-36585.

Schüler H., Matuschewski K. 2006. Regulation of apicomplexan microfilament dynamics by a minimal set of actin-binding proteins. Traffic 7: 1433-1439.

Siddiqui A. H., Nizami W. A. 1975. Gas content of swim bladder of Wallago attu and oxygen consumption in Isoparorchis hypselobagri (Trematoda). Z. Parasitenkd. 47: 263-268.

Soldatti-Favre D. 2008. Molecular dissection of host cell invasion by the apicomplexans: the glideosomes. Parasite 15: 197-205.

Watabe S. 2002. Temperature plasticity of contractile proteins in fish muscle. J. Exp. Biol. 205: 2231-2236.

Wetzel D. M., Hakansson S., Hu K., Roos D., Sibley L. D. 2003. Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol. Biol. Cell. 14: 396-406.