Alleviation of nickel toxicity in wheat (Triticum aestivum L.) seedlings by selenium supplementation
PDF

Keywords

chlorophyll
electrolyte leakage
nickel stress
photochemical activity
selenium

How to Cite

Gajewska, E., Drobik, D., Wielanek, M., Sekulska-Nalewajko, J., Gocławski, J., Mazur, J., & Skłodowska, M. (2014). Alleviation of nickel toxicity in wheat (Triticum aestivum L.) seedlings by selenium supplementation. Biological Letters, 50(2), 65–78. https://doi.org/10.2478/biolet-2013-0008

Number of views: 108


Number of downloads: 90

Abstract

Hydroponically grown wheat seedlings were treated with 50 μM N i and/or 15 μM Se. After a 7-day culture period, their growth parameters, N i, Se, F e, and M g contents, electrolyte leakage, photosynthetic pigment concentrations, and photochemical activity of photosystem II were determined. Exposure of wheat seedlings to N i alone resulted in reduction in the total shoot and root lengths, by 22% and 50%, respectively. Addition of Se to the N i-containing medium significantly improved the growth of these organs, compared to the seedlings subjected to N i alone. Application of Se decreased the accumulation of N i in shoots and roots and partially alleviated the N i-induced decrease in F e and M g concentations in shoots. Electrolyte leakage increased in response to N i stress, but in shoots it was diminished by Se supplementation. Exposure to N i led to a decrease in chlorophyll a and b contents and enhancement of chlorophyll a/b ratio, but did not influence the concentration of carotenoids. Enrichment of the N i-containing medium with Se significantly increased chlorophyll b content, compared to the seedlings treated with N i alone. Photochemical activity, estimated in terms of the maximum quantum yield of photosystem II , decreased in response to N i treatment but was significantly improved by simultaneous addition of Se. Results of our study suggest that alleviation of N i toxicity in wheat seedlings by Se supplementation may be related to limitation of N i uptake.

https://doi.org/10.2478/biolet-2013-0008
PDF

References

Abdel-Basset R., Issa A. A., Adam M. S. 1995. C hlorophyllase activity: effects of heavy metals and calcium. Photosynthetica 31: 421-425.

Cho U.-H., Park J.-O. 2000. M ercury-induced oxidative stress in tomato seedlings. Plant Sci. 156: 1-9.

Drążkiewicz M., Baszyński T. 2010. I nterference of nickel with the photosynthetic apparatus of Zea mays. E cotoxicol. E nviron. Safe. 73: 982-986.

Fargašovǎ A. 1998. R oot growth inhibition, photosynthetic pigments production, and metal accumulation in Sinapis alba as the parameters for trace metals effect determination. Bull. E nviron. C ontam. Toxicol. 61: 762-769.

Feng R., Wei C., Tu S. 2013. The roles of selenium in protecting plants against abiotic stresses. Environ. E xp. Bot. 87: 58-68.

Filek M., Keskinen R., Hartikainen H., Szarejko I., Janiak A., Miszalski Z., Golda A. 2008. The protective role of selenium in rape seedlings subjected to cadmium stress. J . Plant Physiol. 165: 833-844.

Filek M., Gzyl-Malcher B., Zembala M., Bednarska E., Laggner p., Kriechbaum M. 2010. E ffect of selenium on characteristics of rape chloroplasts modified by cadmium. J . Plant Physiol. 167: 28-33.

Gajewska E., Skłodowska M. 2007. E ffect of nickel on RO S content and antioxidative enzyme activities in wheat leaves. BioMetals 20: 27-36.

Gajewska E., Skłodowska M. 2009. N ickel-induced changes in nitrogen metabolism in wheat shoots. J . Plant Physiol. 166: 1034-1044.

Gajewska E., Bernat P., Długoński J., Skłodowska M. 2012. E ffect of nickel on membrane integrity, lipid peroxidation and fatty acid composition in wheat seedlings. J . Agron. C rop Sci. 198: 286-294.

Gocławski J., Sekulska-Nalewajko J., Gajewska E., Wielanek M. 2009. An automatic root length measurement of wheat seedlings from hydroponic culture using the methods of image processing and analysis. Automatyka 13: 831-847 (in Polish).

Hawrylak B., Matraszek R., Szymańska M. 2007. R esponse of lettuce (Lactuca sativa L.) to selenium in nutrient solution contaminated with nickel. V eg. C rops R es. Bull. 67: 63-70.

Hasanuzzaman M., Hossain M. A., Fujita M. 2010. Selenium in higher plants: Physiological role, antioxidant metabolism and abiotic stress tolerance. J . Plant Sci. 5: 354-375.

Hasanuzzaman M., Hossain M. A., Fujita M. 2012. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol. Trace E lem. R es. 149: 248-261.

He P. P., Lu X. Z., Wang G. Y. 2004. E ffects of Se and Z n supplementation on the antagonism against Pb and C d in vegetables. E nviron. I nt. 30: 167-172.

Kong L., Wang M., Bi D. 2005. Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant G rowth Regul. 45: 155-163.

Kumar M., Bijo A. J., Baghel R. S., Reddy C. R. K., Jha B. 2012. Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DN A methylation. Plant Physiol. Biochem. 51: 129-138.

Llamas A., Sanz A. 2008. O rgan-distinctive changes in respiration rates of rice plants under nickel stress. Plant G rowth R egul. 54: 63-69.

Llamas A., Ull rich C. I., Sanz A. 2008. N i2+ toxicity in rice: E ffect on membrane functionality and plant water content. Plant Physiol. Biochem. 46: 905-910.

Malik J. A, Goel S., Kaur N., Sharma S., Singh I., Nayyar H. 2012. Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus R oxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. E nviron. E xp. Bot. 77: 242-248.

Marsh H . V . J r., E vans H . J ., M atrone G . 1963. I nvestigations of the role of iron in chlorophyll metabolism. II . E ffect of iron deficiency on chlorophyll synthesis. Plant Physiol. 38: 638-642.

Marschner H. 1995. M ineral nutrition of higher plants. Academic Press, London.

Molas J. 1997. C hanges in morphological and anatomical structure of cabbage (Brassica oleracea L.) outer leaves and in ultrastructure of their chloroplasts caused by an in vitro excess of nickel. Photosynthetica 34: 513-522.

Ouzounidou G., Moustakas M., Symeonidis L., Karataglis S. 2006. R esponse of wheat seedlings to N i stress: effects of supplemental calcium. Arch. E nviron. C ontam. Toxicol. 50: 346-352.

Pandey N., Sharma C. P. 2002. E ffect of heavy metals C o2+, N i2+ and C d2+ on growth and metabolism of cabbage. Plant Sci. 163: 753-758.

Pedrero Z., Madrid Y., Hartikainen H., Cámara C. 2008. Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. J . Agric. F ood C hem. 56: 266-271.

Pennanen A., Xue T., Hartikainen H. 2002. Protective role of selenium in plant subjected to severe UV irradiation stress. J . Appl. Bot. 76: 66-76.

Popova L. P., Maslenkova L. T., Yordanova R. Y., Ivanova A. P., Krantev A. P., Szalai G., Janda T. 2009. E xogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings.Plant Physiol. Biochem. 47: 224-231.

Sekulska-Nalewajko J., Gocławski J. 2011. An image analysis method for the automatic measurement of selected morphological features of wheat shoots. Automatyka 15: 243-257.

Shanker K., Mishra S., Srivastava S., Srivatava R., Dass S., Prakash S., Srivastava M. M. 1996. Effect of selenite and selenate on plant uptake of cadmium by maize (Zea mays). Bull. E nviron.C ontam. Toxicol. 56: 419-424.

Sheoran I. S., Singal H. R., Singh R. 1990. E ffect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynth. R es. 23: 345-351.

Srivastava S., Shanker K., Srivatava R., Srivastava S., Dass S., Prakash S., Srivastava M. M. 1998. E ffect of selenium supplementation on the uptake and translocation of chromium in spinach (Spinacea oleracea). Bull. E nviron. C ontam. Toxicol. 60: 750-758.

Szymańska M., Matraszek R. 2005. R eaction of the sunflower (Helianthus annuus L.) to nickel conditioned by the way of metal penetration. Acta Sci. Pol. H ortorum C ultus 4: 139-152. The Mathworks Inc. 2011a. I mage processing toolbox user’s guide, http://www.mathworks.com/help/toolbox/images

The Mathworks Inc. 2011b. ME X-files guide, http://www.mathworks.com/support/technotes/1600/1605.html

Velikova V., Tsonev T., Loreto F., Centritt o M. 2011. C hanges in photosynthesis, mesophyll conductance to CO 2, and isoprenoid emissions in Populus nigra plants exposed to nickel stress. Environ. Pollut. 159: 1058-1066.

Watkinson J. H. 1966. F luorometric determination of selenium in biological material with 2,3-diaminonaphthalene. Anal. C hem. 38: 92-97. Wellb urn A. R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J . Plant Physiol. 144: 307-313.

Xue T., Hartikainen H., Piironen V. 2001. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237: 55-61.

Zembala M., Filek M., Walas S., Mrowiec H., Kornaś A., Miszalski Z., Hartikainen H. 2010. Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329: 457-468.