Crystalline protein profiling and cry gene detection in Bacillus thuringiensis strains isolated during epizootics in Cydia pomonella L.
PDF

Keywords

Bacillus thuringiensis
cry gene
crystalline toxin

How to Cite

Konecka, E., Baranek, J., & Kaznowski, A. (2015). Crystalline protein profiling and cry gene detection in Bacillus thuringiensis strains isolated during epizootics in Cydia pomonella L. Biological Letters, 51(2), 83–92. https://doi.org/10.1515/biolet-2015-0008

Number of views: 31


Number of downloads: 57

Abstract

The composition of Bacillus thuringiensis crystalline inclusions was characterized in 18 strains: 12 isolates were obtained from the intestinal tract of Cydia pomonella larvae during epizootics, 2 isolates were cultured from Leucoma salicis larvae taken from their natural populations, and 4 reference strains. The number and molecular mass of B. thuringiensis crystalline proteins (Cry and Cyt) was estimated by the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The crystals contained 1-8 proteins with molecular masses of 36-155 kDa. The toxin profiles differed both quantatively and qualitatively. The B. thuringiensis MPU B9 isolate had the highest number and diversity of Cry toxins. The analysis of crystal composition by SDS-PAGE was insufficient to detect groups and subgroups of Cry proteins. We identified 20 groups and 3 subgroups of Cry and Cyt crystalline toxins. Only one epizootic strain harboured cry25. In single reference strains, the cry1H, cry10 and cry25 genes were found. We did not find any correlation between the occurrence of cry genes and electrophoretic protein profiles of crystalline toxins.

https://doi.org/10.1515/biolet-2015-0008
PDF

References

Alzate O., Hermann C. F., Osorio C., Hille R., Dean D. H. 2009. Ser170 of Bacillus thuringiensis Cry1Ab δ-endotoxin becomes anchored in a hydrophobic moiety upon insertion of this protein into Manduca sexta brush border membranes. BMC Biochem. 10:25: 1-10.

Armengol G., Escobar M. C., Maldonado M. E., Orduz S. 2007. Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. J. Appl. Microbiol. 102: 77-88.

Bernhard K., Jarrett P., Meadows M., Butt J., Ellis D. J., Roberts G. M., Pauli S., Rodgers P., Burges H. D. 1997. Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insects pests. J. Invert. Pathol. 70: 59-68.

Brousseau R., Saint-Onge G. A., Prefontaine L., Masson L., Cabana J. 1993. Arbitrary primer polymerase chain reaction, a powerful method to identification Bacillus thuringiensis serovars and strains. Appl. Environ. Microbiol. 59: 114-119.

Costas M. 1992. Classification, identification and typing of bacteria by the analysis of their one-dimensional polyacrylamide gel electrophoretic protein patterns. In: Advanced in electrophoresis (Chrambach A., Dunn M. J., Radola B. J., Eds), vol 5, pp. 351-408, VCH, Weinheim, New York, Basel, Cambridge.

Crickmore N., Zeigler D. R., Feitelson J. D. R., Schnep f E., Van Rie J., Lereclus D., Baum J., Dean D. H. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807-813.

Ejiofor A. O., Johnson T. 2002. Physiological and molecular detection of crystalliferous Bacillus thuringiensis strains from habitats in the South Central United States. J. Ind. Microbiol. Biotechnol. 28: 284-290.

Guz K., Kucińska J., Lonc E., Doroszkiewicz W. 2005. Differentiated pattern of protein composition of crystalline inclusions of newly isolated Bacillus thuringiensis strains from Silesia in Poland. Pol. J. Microbiol. 54: 263-269.

Güereca L., Bravo A. 1999. The oligomeric state of Bacillus thuringiensis Cry toxins in solution. Biochim. Biophis. Acta 1429: 342-350.

Hua G., Masson L., Jurat-Fuentes J. L., Schwab G., Adang M. J. 2001. Binding analyses of Bacillus thuringiensis Cry δ-endotoxins using brush border membrane vesicles of Ostrinia nubilalis. Appl. Environ. Microbiol. 67: 872-879.

Ibarra J. E., Del Rincón M. C., Ordúz S., Noriega D., Benintende G., Monnerat R., Regis L., De Olive ira C. M. F., Lanz H., Rodriguez M. H., Sánchez J., Peña G., Bravo A. 2003. Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl. Environ. Microbiol. 69: 5269-5274.

Jouzani G. S., Abad A. P., Seifinejad A., Marzban R., Kariman K., Malek i B. 2008. Distribution and diversity of Dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. J. Ind. Microbiol. Biotechnol. 35: 83-94.

Konecka E., Kaznowski A., Ziemnicka J., Ziemnicki K. 2007a. Molecular and phenotypic characterisation of Bacillus thuringiensis isolated during epizootics in Cydia pomonella L. J. Inver. Pathol. 94: 56-63.

Konecka E., Kaznowski A., Ziemnicka J., Ziemnicki K., Paetz H. 2007b. Analysis of cry gene profiles in Bacillus thuringiensis strains isolated during epizootics in Cydia pomonella L. Curr. Microbiol. 55: 217-222.

Lecadet M. M., Dedonder R. 1971. Biogenesis of the crystalline inclusion of Bacillus thuringiensis during sporulation. Eur. J. Biochem. 23: 282-294.

Martin P. A., Trave rs R. S. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55: 2437-2442.

Masson L., Erlandson M., Puzstai-Carey M., Brousseau R., Juárez-Pérez V. M., Frutos R. 1998. A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strain. Appl. Environ. Microbiol. 64: 4782-4788.

Meadows M. P., Ellis D. J., Butt J., Jarrett P., Burges H. D. 1992. Distribution, frequency, and diversity of Bacillus thuringiensis in an animal feed mill. Appl. Environ. Microbiol. 58: 1344-1350.

Mohan M., Sushil S. N., Selvakumar G., Bhatt J. C., Gujarb G. T., Gupta H. T. 2009. Differential toxicity of Bacillus thuringiensis strains and their crystal toxins against high-altitude Himalayan populations of diamondback moth, Plutella xylostella L. Pest Manag. Sci. 65: 27-33.

Monnerat R., Martins E., Queiroz P., Ordúz S., Jaramillo G., Benintende G., Cozzi J., Real M. D., Martinez-Ramirez A., Rausell C., Cerón J., Ibarra J. E., Del Rincon-Castro M. C., Espinoza A. M., Meza-Basso L., Cabrera L., Sánchez J., Soberon M., Bravo A. 2006. Genetic variability of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) populations from Latin America is associated with variations in susceptibility to Bacillus thuringiensis Cry toxins. Appl. Environ. Microbiol. 72: 7029-7035.

Monnerat R. G., Batista A. C., De Medeiros P. T., Martins E. S., Melatti V. M., Praça L. B., Dumas V. F., Morinaga C., Demo C., Menezes Gomes A. C., Falcaão R., Siqueira C. B., Silva-Werneck J. O., Berry C. 2007. Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biol. Control. 41: 291-295.

Nazarian A., Jahangiri R., Jouzani G. S., Seifinejad A., Soheilivand S., Bagheri O., Keshavarzi M., Alamisaeid K. 2009. Coleopteran-specific and putative novel cry genes in Iranian native Bacillus thuringiensis collection. J. Invert. Pathol. 102: 101-109.

Park H., Bibeshi D. K., Federici B. A. 2000. Molecular genetic manipulation of truncated Cry1C protein synthesis in Bacillus thuringiensis to improve stability and yield. Appl. Environ. Microbiol. 66: 4449-4455.

Pocar M., Caballero P. 2000. Molecular and insecticidal characterization of a Bacillus thuringiensis strain isolated during a natural epizootic. J. Appl. Microbiol. 89: 309-316.

Sanahuja G., Banakar R., Twyman R. M., Capell T., Christou P. 2011. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9: 283-300.

Schnepf E, Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. R., Dean D. H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.

Van Frankenhuyzen K. 2009. Insecticidal activity of Bacillus thuringiensis crystal proteins. J. Invert. Pathol. 101: 1-16.

Vidal-Quist J. C., Castañera P., González-Cabrera J. 2009. Diversity of Bacillus thuringiensis strains isolated from citrus orchards in Spain and evaluation of their insecticidal activity against Ceratitis capitata. J. Microbiol. Biotechnol. 19: 749-759.

Zhu Y. S., Brookes A., Carlson K., Filner P. 1998. Separation of protein crystals from spores of Bacillus thuringiensis by ludox gradient centrifugation. Appl. Environ. Microbiol. 55: 1279-1281.

Ziemnicka J., Ziemnicki K. 2001. Bacillus thuringiensis: an epizootic agent in laboratory cultures of Codling moth (Cydia pomonella L.). Prog. Plant Prot. 41: 503-508.