Protein pattern of canola (Brassica napus L.) changes in response to salt and salicylic acid in vitro
PDF

Keywords

oilseed rape
Brassica napus
canola
protein
proline
salinity
salicylic acid

How to Cite

Razavizadeh, R. (2016). Protein pattern of canola (Brassica napus L.) changes in response to salt and salicylic acid in vitro. Biological Letters, 52(1-2), 19–36. https://doi.org/10.1515/biolet-2015-0012

Number of views: 51


Number of downloads: 28

Abstract

The effect of salicylic acid (SA) on the salt (NaCl) tolerance mechanism was studied in canola plants (oilseed rape, Brassica napus L.) by molecular and physiological experiments in plant tissue culture. Seeds of B. napus ‘Ocapy’ were germinated at 0, 50, and 100 mM NaCl on Murashige and Skoog (MS) medium containing different levels (0, 2, and 5 μM) of SA for 4 weeks. Total chlorophyll, carotenoid, and flavonoid content increased in response to interactive effects of SA and NaCl treatments at some concentrations. Proline content was increased under salt and SA treatments in shoot and root tissues. Salt alone and in combination with SA increased the total soluble protein content of shoots only, while the different concentrations of SA in the culture media affected variously the total soluble protein content. Protein patterns of shoots and roots showed some remarkable differences, based on gel electrophoresis and the consequent analysis of bands by ImageJ program. The relative expression of 15 and 12 protein bands in shoots and roots, respectively, differed under the applied treatments. In addition, the protein profile indicated that salinity and SA regulate the expression of salt-stress-inducible proteins as well as induced de novo synthesis of specific polypeptides. The findings may help to explain the salt tolerance mechanisms and to produce salt-tolerant canola plants.
https://doi.org/10.1515/biolet-2015-0012
PDF

References

Antoline M. C., Sauchez-Dais M. 1992. Photosynthetic nutrient use deficiency, nodule activity and solute accumulation in drought stressed alfalfa plants. Photosynthetica 27: 595-604.

Baninasab B., Ghobadi C. 2011. Influence of paclobutrazol and application methods on high temperature stress injury in cucumber seedling. J. Plant. Growth. Reg. 30: 213-219.

Barakat N. A. M. 2011. Oxidative stress markers and antioxidant potential of wheat treated with phytohormones under salinity stress. J. Stress. Physiol. Biochem. 7: 250-267.

Blumwald E., Grover A. 2006. Salt tolerance. In: Plant biotechnology: current and future uses of genetically modified crops (HALFORD N. G., Eds), pp. 206-224, John Wiley and Sons Ltd, UK.

Borsani O., Valpuesta V., Botella M. A. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol. 126: 1024-1030.

Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annals of Biochem. 72: 248-254.

Burkhanova E. A., Fedina A. B., Kulaeva O. N. 1999. Effect of salicylic acid and (2/ - 5/)-oligoadenylates on protein synthesis in tobacco leaves under heat shock conditions: a comparative study. Russ. J. Plant. Physiol. 46: 16-22.

Bybordi A. 2010. Effects of salinity and N on the growth, photosynthesis and N status of canola (Brassica napus L.). Not. Sci. Biol. 2: 92-97.

Carillo P., Gibon Y., Prometheuswiki Contributors. 2011. Extraction and determination of proline [Internet]. PrometheusWiki; 2011 May 31. http://www.publish.csiro.au/prometheuswiki/tikipagehistory.php?page=Extractionanddeterminationofproline&preview=14.

Carillo P., Mastrolonardo G., Nacca F., Parisi D., Verlotta A., Fuggi A. 2008. Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Funct. Plant. Biol. 35: 412-426.

Christoffersen R. E., Laties G. G. 1982. Ethylene regulation of gene expression in carrots. Bontany 79: 4060-4063.

Delavari P. M., Baghizadeh A., Enteshari S. H., Kalantari K. H. M., Yazdanpanah A., Mousavi E. A. 2010. The effects of salicylic acid on some of biochemical and morphological characteristic of Ocimum basilicum under salinity stress. Aust. J. Basic. and Appl. Sci. 4: 4832-4845.

Demmig-Adams B. 1990. Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta. 1020: 1-24.

Eckhardt U., Grimm B., Hortensteiner S. 2004. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant. Mol. Biol. 56: 1-14.

El-Khallal S. M., Hathout T. A., El Raheim A., Ahsour A., Kerrit A. A. A. 2009. Brassinolide and salicylic acid induced antioxidant enzymes, hormonal balance and protein profile of maize plants grown under salt stress. Res. J. Agr. Biol. Sci. 5: 391-402.

El-Shihaby O. A., Nematalla M. M., Younis M. E., El-Bastawisy Z. M. 2002. Effect of kinetin on photosynthetic activity and carbohydrate content in waterlogged or seawater- treated Vigna sinensis and Zea mays plants. Plant Biosys. 136: 277-290.

El-Tayeb M. A. 2005. Response of barley Gains to the interactive effect of salinity and salicylic acid. Plant Growth Regul. 45: 215-225.

Epstein E., Norlyn J. D., Rush D. W., Kingsbury R. W., Kelley D. B., Cummingaham G. A., Wrona A. F. 1980. Saline culture of crops: a genetic approach. Sci. 210: 339-404.

Gepstein S., Grover A., Blumwald E. 2006. Producing biopharmaceuticals in the desert: building an abiotic stress tolerance in plants for salt, heat and drought. In: Modern biopharmaceuticals (Knablein J., Muller R. H., Eds), pp. 967-994, Wiley-VCH Verlag GmbH, Wein- Haum.

Ghorbani Javid M., Sorooshzadeh A., Moradi F., Modarres Sanavy S. A. M., Allahdadi I. 2011. The role of phytohormones in alleviating salt stress in crop plants. Aust. J. Crop. Sci. 5: 726-734.

Girija C., Smith B. N., Swamy P. M. 2002. Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycinebetaine in Peanut (Arachis hypogaea L.). Environ. Exp. Bot. 47: 1-10.

Glass A. D. M. 1975. Inhibition of phosphate uptake in barley roots by hydroxyl-benzoic acids. Phytochemistry 14: 2127-2130.

Gunstone D. F., Harwood J. L., Padley F. B. 1995. The lipid handbook. Chapman and Hall Press, London.

Hajduch M., Casteel J. E., Hurrelmeyer K. E., Song Z., Agrawal G. K., Thelen J. J. 2006. Proteomic analysis of seed filling in Brassica napus developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol. 141: 32-46.

Hamdia M. A., Shaddad M. A. K. 2010. Salt tolerance of crop plants. J. Stress Physiol. Biochem. 6: 64-90.

Hamid M., Ur-Rehman K., Ashraf M. Y. 2010. Salicylic acid-induced growth and biochemical changes in salt-stressed wheat. Commun. Soil Sci. Plant. 41: 373-389.

Hare P. D., Cress W. A. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21: 79-102.

Hashemi S., Asrar Z., Pourseyedi S. 2010. Effects of seed pretreatment by salicylic acid on growth and some physiological and biochemical parameters in Lepidium sativum. Iran J. Plant Biol. 2: 1-10. (in Persian).

Haslam E. 1998. Practical polyphenolics: from structure to molecular recognition and physiological action. Cambridge University Press, Cambridge.

Hummel I., Pantin F., Supice R., Piques M., Rolland G., Dauzat M., Christophe A., Pervent M., Bouteille M., Stitt M., Gibon Y., Muller B. 2010. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme and gene expression analysis. Plant Physiol. 154: 357-372.

Hussein M. M., Balbaa L. K., Gaballah M. S. 2007. Salicylic acid and salinity effects on growth of maize plants. Res. J. Agr. Biol. Sci. 3: 321-328.

Hyoda H., Yang S. H. 1971. Ethylene enhances synthesis of phenylalanine ammonialyase in pea seedlings. Plant Physiol. 47: 765-770.

Jamil M., Ashraf M., Rehman Su., Ahmad M., Rha E. S. 2012. Salinity induced changes in cell membrane stability, protein and RNA contents. Afr. J. Biotechnol. 11: 6476-6483.

Kang G., Li G., Zheng B., Han Q., Wang C., Zhu Y., Guo T. 2012. Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedling (Triticum aestivum L.). Biochim. Biophys. Acta. 1824: 1324-1333.

Kaydan D., Yagmur M., Okut N. 2007. Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi 13: 114-119.

Khedr A. H. A., Abbas M. A., Wahid A. A. A., Quick W. P., Abogadallah G. M. 2003. Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J. Exp. Bot. 54: 2553-2562.

Klessig D. F., Malamy J. 1994. The salicylic acid signal in plants. Plant. Mol. Biol. 26: 1439 - 1458.

Kliebenstein D. J. 2004. Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 27: 675-684.

Kong-Ngern K., Daduang S., Wongkham C. H., Bunnag S., Kosittrakuna M., Theerakulpisuta P. 2005. Protein profiles in response to salt stress in leaf sheaths of rice seedlings. Science Asia 31: 403-408.

Krizek D. T., Brita S. J., Miewcki R. M. 1998. Inhibitory effects of ambient level of solar UV-A and UV-B on growth of cv. New Red Fire lettuce. Plant Physiol. 103: 1-7.

Larque-Saaveda A. 1979. Stomatal closure in response to salicylic acid treatment. Z. Pflanzenphysiol. 93: 371-375.

Leung J., Bouvier-Durand M., Morris P. C., Guerrier D., Chedfor F., Giraudat J. 1994. Arabidopsis ABA-response gene ABI1: features of a calcium-modulated protein phosphatase. Sci. 264: 1448-1452.

Levent Tuna A., Kaya C., Dikilitas M., Yokas I., Burun B., Altunlu H 2007. Comparative effects of various salicylic acid derivatives on key growth parameters and some enzyme activities in salinity stressed maize (Zea mays L.) plants. Pak. J. Bot. 39: 787-798.

Lichtenthaler H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method Enzymol. 148: 350-382.

Liu J., Zhu J. K. 1997. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc. Nath. Acad. Sci. U. S. A. 94: 14960-14964.

Lopes F., Vansuyt G., Fourcroy P., Casse-Delbart F. 1994. Accumulation of 22-KDa protein and its mRNA in the leaves of Raphanus sativus in response to salt stress or water deficit. Physiol. Plant. 91: 605-614.

Maggio A., Miyazaki S., Veronese P., Fujita T., Ibeas J. I., Damsz B., Narasihan M. L., Hasegawa P. M., Joly R. J., Bressan R. A. 2002. Does proline accumulation play an active role in stressinduced growth reduction? Plant J. 31: 699-712.

Mattioli R., Costantino P., Trovato M. 2009. Proline accumulation in plants: not only stress. Plant. Signal. Behav. 4: 1016-1018.

Mckersie B. D., Senaratna T., Walker M. A., Kendall E. J., Hetherington P. R. 1988. Deterioration of membranes during aging in plants: Evidence for free radical mediation. In: Senescence and aging in plants (Nooden L.D., Leopold A. C., Eds), pp. 442-464, .Academic Press, London, UK.

Mikołajczyk M., Awotunde O. S., Muszyska G., Klessig D. F., Dobrowolska A. G. 2000. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. The Plant Cell 12: 165-178.

Misra N., Saxena P. 2009. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci. 177: 181-189.

Mittova V., Theodoulou F. L., Kiddle G., Volokita M., Tal M., Foyer C. H., Guy M. 2004. Comparison of mitochondrial ascorbate peroxidase in the cultivated tomato (Lycopersicom esculentum) and its wild salt-tolerant relative (L. penelli) - a role for matrix isoforms in protection against oxidative damage. Plant Cell Environ. 27: 237-250.

Mohrekar S. T., Lokhande (Mohrekar) S. D., Hara T., Tanaka R., Tanaka A., Chavan P. D. 2003. Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings. Photosynthetica 41: 315-317.

Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15: 473-497.

Nasr N., Khayami M., Heidari R., Jamei R. 2006. Genetic diversity among selected varieties of Brassica napus (Cruciferae) based on the biochemical composition of seeds. J. Sci. (University of Tehran) 32: 37-40.

Nazar R., Iqbal N., Syeed S., Khan N. A. 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J. Plant Physiol. 168: 807-815.

Norton G., Harris J. F. 1975. Compositional changes in developing rape seed (Brassica napus L.). Planta 123: 163-174.

Olson B. J. S. C., Markwell J. 2007. Current protocols in protein science. Detection and Assay Method. 48: 3.4.1 - 3.4.29.

Pancheva T. V., Popova L. P., Uzunova A. N. 1996. Effects of salicylic acid on growth and photosynthesis in barley plants. J. Plant Physiol. 149: 57-63.

Panda S., Biswal U. C. 1989. Aging induced changes in thylakoid membrane organization and photoinhibition of pigments. Photosynthetica 23: 507-516.

Parida A. K., Mittra B., Das T. K., Mohantly D. A. 2005. High salinity reduces the content of highly abundant 23-KDa protein of the mangrove Bruguiera parviffora. Planta 221: 135-140.

Pavlikova D., Pavlik M., Staszkova L., Motyka V., Szakova J., Tlustos P., Balik J. 2008. Glutamate kinase as a potential biomarker of heavy metal stress in plants. Ecotox. Environ. Safe. 70: 223-230.

Przymusiński R., Rucińka R., Gwoźdź E. A. 2004. Increased accumulation of pathogenesis-related proteins in response of lupine roots to various abiotic stresses. Environ. Exp. Bot. 52: 53-61.

Raskin I. 1992. Role of salicylic acid in plants. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 43: 439-463.

Rostami F., Ehsanpour A. A. 2009. Application of silver thiosulfate (STS) on silver accumulation and protein pattern of potato (Solanum tuberosum L.) under in vitro culture. Malays Appl. Biol. 32: 49-54.

Sadia M., Salman A. M., Rabbani M. A., Pearce S. R. 2009. Electrophoretic characterization and the relationship between some Brassica species. Electron. J. Biol. 5: 1-4.

Sahi C., Singh A., Kumar K., Blumwald E., Grover A. 2006. Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct. Integr. Genomics 6: 263-284.

Sakaki T., Kondo N., Sugahara K. 1983. Breakdown of photosynthetic pigments and lipid in spinach leaves with ozone fumigation: role of active oxygen. Physiol. Plant. 59: 28-34.

Sakhanokho H. F., Kelley R.Y. 2009. Influence of salicylic acid on in vitro propagation and salt tolerance in Hibiscus acetosella and Hibiscus moscheutos (cv ‘Luna Red’). Afr. J. Biotechnol. 8: 1474-1481.

Salehi Z., McCarthy J. E. G. 2002. Structure and function of cap-associated proteins in yeast. PhD thesis, University of Manchester, Institute of Sciences and Technology (UMIST), Manchester, England.

Schaller G., Kieber J. 2002. Ethylene. The Arabidopsis Book 1: 1-17.

Senaratna T., Touchell D., Bunn E., Dixon K. 2000. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant. Growth Reg. 30: 157-161.

Shahba Z., Baghizadeh A., Vakili S. M., Yazdanpanah A., Yosefi M. 2010. The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). J. Biophys. Struct. Biol. 2: 35-41.

Shirani Bidabadi S., Mahmood M., Baninasab B., Ghobadi C. 2012. Influence of salicylic acid on morphological and physiological responses of banana (Musa acuminata cv.‘Berangan’, AAA) shoot tips to in vitro water stress induced by polyethylene glycol. Plant. Omics. J. 5: 33-39.

Siefemann-Harms D. 1987. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant. 69: 561-568.

Srichandan S. C., Choudhury N. K., Biswal U. C. 1989. Carotenoid degradation during in vitro aging of wheat chloroplasts. Photosynthetica 23: 687-690.

Štefl M., Vasakova L. 1984. Regulation of proline-inhibitable glutamate kinase (E.C. 2.7.2.11, ATP-gamma- L-glutamate phosphotransferase) of winter-wheat leaves by mono-valent cations and L-proline. Collect. Czech Chem. Commun. 49: 2698-2708.

Szabodos L., Savour A. 2010. Proline: a multifunctional amino acid. Trends Plant Sci. 15: 89-97.

Tari I., Csiszar J., Szalai G., Horvath F., Pecsvaradi A., Kiss G, Szepesi A., Szabo M., Erdei L. 2002. Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biol. Szegediensis. 46: 55-56.

Trovato M., Mattioli R., Costantino P. 2008. Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei 19: 325-346.

Undovenko G. V. 1971. Effect of salinity of substrate on nitrogen metabolism of plants with different salt tolerance. Agro Khimiya 3: 23-31.

Vasakova L., Štefl M. 1982. Glutamate kinases from winter-wheat leaves and some properties of the proline-inhibitable glutamate kinase. Collect. Czech Chem. Commun. 47: 349-359.

Vetbugge n N., Hermans C. 2008. Proline accumulation in plants: a review. Amino Acids 35: 753-759.

Ververidis F., Trantas E., Doglas C., Vollmer G., Kretzschmar G., Panopoulos N. 2007. Biotechnology of flavonoid and phenylpropanoid natural products Reconstruction of multienzyme pathway in plants and Microbes. Biotechnol. J. 2: 1235-1249.

Vettakkorumkankay N. N., Falk D., Saxena P., Fletcher R. A. 1999. A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol. 40: 542-548.

Vijayan K. 2009. Approaches for enhancing salt tolerance in mulberry (Morus L.) - a review. Plant Omics. J. 2: 41-59.

Wasti S., Mimouni H., Smiti S., Zid E., Ben Ahmed H. 2012. Enhanced salt tolerance of tomatoes by exogenous salicylic acid applied through rooting medium. Omics 16: 200-207.

Xiong L., Schumaker K. S., Zhu J. K. 2002. Cell signaling during cold, drought, and salt stress. The Plant Cell Supplement: 165-183.

Yamane K., Rahman M. S., Kawaski M., Tniguchi M., Miyake H. 2004. Pretreatment with antioxidants decreases the effects of salt stress on chloroplast ultra-structure in rice leaf. Plant Production Sci. 7: 292-300.

Young A. J. 1991. The photoprotective role of carotenoids in higher plants. Physiol. Plant. 83: 702-708.

Zhang S., Klessig D. F. 1997. Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9: 809-824.

Zhu J. K. 2007. Plant salt stress. Encyclopedia Life Sci. 2: 1-3.