Biochemical composition of two giant pill-millipedes of the Western Ghats of India
PDF

Keywords

Arthrosphaera
millipedes
proximate composition
minerals
amino acids
fatty acids

How to Cite

Ambarish, C. N., & Sridhar, K. R. (2016). Biochemical composition of two giant pill-millipedes of the Western Ghats of India. Biological Letters, 52(1-2), 45–61. https://doi.org/10.1515/biolet-2015-0014

Abstract

Many invertebrates have an unexpected nutraceutical potential and are of nutritional or ethnomedicinal significance to many tribals throughout the world. The giant pill-millipedes of the genus Arthrosphaera are traditionally used as natural medicines by tribals in the Western Ghats of India. In this study, two species of pill-millipedes (Arthrosphaera fumosa and A. magna) were subjected to proximate and biochemical analysis to ascertain their nutritional potential. Bodies of A. fumosa and A. magna (after removal of their intestines) had a low protein content (8-15%) and high quantity of carbohydrates (40-41%). They were rich in many essential elements, especially in calcium. The essential amino acids of pillmillipedes were in high quantities. The level of glycine was the highest, followed by lysine and serine. The fatty acid methyl esters (FAMEs) of males and females consist of high quantities of unsaturated fatty acids. The mono-unsaturated fatty acids were more abundant than poly-unsaturated fatty acids. Palmitic and oleic acids were dominant saturated and unsaturated fatty acids, respectively. The study has revealed for the first time that pill-millipedes of the Western Ghats of India constitute a good source of essential minerals, essential fatty acids, and essential amino acids. Being valuable contributors of organic manure by processing recalcitrant plant lignocellulosic wastes, pill-millipedes become part and parcel of organic farming as well as future nutraceutical sources.

https://doi.org/10.1515/biolet-2015-0014
PDF

References

Abulude F. O., Folorunso R. O. 2003. Preliminary studies on millipede: proximate composition, nutritionally valuable minerals and phytate contents. Glob. J. Agric. Sci. 2: 68-71.

Anderson J. M., Bignell D. E. 1980. Bacteria in the food, guts and faeces of the millipede Glomeris marginata (Villers). Soil Biol. Biochem. 12: 251-255.

Aoac. 2006. Official Methods of Analysis, 18th Edition. Association of Official Analytical Chemists, Washington DC.

Arrese E. L., Soulages J. L. 2010. Insect fat body: energy, metabolism, and regulation. Ann. Rev. Entomol. 55: 207-225.

Banjo A. D., Lawall O. A., Songonuga E. A. 2006. The nutritional value of fourteen species of edible insects in south western Nigeria. Afric. J. Biotech. 5: 298-301.

Beenakkers A. M. T., Van Der Horst D. J., Van Marrewijk W. J. A. 1985. Insect lipids and lipoproteins, and their role in physiological processes. Prog. Lipid Res. 24: 19-67.

Bligh E. G., Dyer W. J. 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.

Bophimai P., Siri S. 2010. Fatty acid composition of some edible dung beetles in Thailand. Int. Food Res. J. 17: 1025-1030.

Brand W. A., Tegtmeyer A. R., Hilkert A. 1994. Compound-specific isotope analysis: extending towards 15N/14N and 13C/12C. Org. Geochem. 21: 585-594.

Canavoso L. E., Jouni Z. E., Karnas K. J. 2001. Fat metabolism in insects. Ann. Rev. Nutr. 21: 23-46.

Charnov E. L., Turner T. F., Winemiller K. O. 2001. Reproductive constraints and the evolution of life histories with indeterminate growth. Proc. Natl. Acad. Sci. 98: 9460-9464.

Christensen D. L., Orech F. O., Mungai M. N., Larsen T., Friis H., Aagaard-Hansen J. 2006. Entomophagy among the Luo of Kenya: a potential mineral source? Int. J. Food Sci. Nutr. 57: 198-203.

Downer R. G. H., Matthews J. R. 1976. Patterns of lipid distribution and utilization in insects. Am. Zool. 16: 733-745.

Dubois M., Gilles K., Hamilton J., Rebers P., Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.

Ekanayake S., Jansz E. R., Nair B. M. 1999. Proximate composition, mineral and amino acid content of mature Canavalia gladiata seeds. Food Chem. 66: 115-119.

Enghoff H., Manno N., Tchibozo S., List M., Schwarzinger B., Schoefberger W., Schwarzinger C., Paoletti M. G. 2014. Millipedes as Food for Humans: Their Nutritional and Possible Antimalarial Value - A First Report. Evid. Based Comp. Alt. Med, DOI: http://dx.doi.org/10.1155/2014/651768.

Finke M. D. 2012. Complete Nutrient Content of Four Species of Feeder Insects. Zoo Biol. 30: 1-15.

Ghaly A. E., Alkoaik F. N. 2009. The Yellow Mealworm as a Novel Source of Protein. Am. J. Agric. Biol. Sci. 4: 319-331.

Grapes M., Whiting P., Dinan L. 1989. Fatty acid and lipid analysis of the house cricket, Acheta domesticus. Insect Biochem. 19: 767-774.

Hadley N. F. 1985. The Adaptive Role of Lipids in Biological Systems. John Wiley and Sons, New York.

Hahn D. A., Denlinger D. L. 2007. Meeting the energetic demands of insect diapause: nutrient storage and utilization. J. Insect Physiol. 53: 760-773.

Heimann W. 1980. Fundamentals of Food Chemistry, 1st Edition. Ellis Horwood Ltd., Chichester, West Sussex.

Hofmann D., Gehre M., Jung K. 2003. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Isot. Environ. Health Stud. 39: 233-244.

Hopkin S. P., Read H. J. 1992. The Biology of Millipedes. Oxford University Press, Oxford.

Jonathan A. A. 2012. Proximate and anti-nutritional composition of two common edible insects: yam beetle (Heteroligus meles) and palm weevil (Rhynchophorus phoenicis). Food Sci. 49: 9782-9786.

Lease H., Wolf B. 2011. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol. Entomol. 36: 29-38.

Mariod A. A., Abdel-Wahab S. I., Ain M. N. 2011. Proximate amino acid, fatty acid and mineral composition of two Sudanese edible pentatomid insects. Int. J. Trop. Insect Sci. 31: 145-153.

Nair V. S. K., Prabhu V. K. K. 1971. On the free amino acids in the haemolymph of a millipede. Comp. Biochem. Physiol. B 38: 1-4.

Nakamura K.,Taira J. 2005. Distribution of elements in the millipede, Oxidus gracilis C. L. Koch (Polydesmida: Paradoxosomatidae) and the relation to environmental habitats. Biometals 18: 651-658.

O’Brien D. M. 1999. Fuel use in flight and its dependence on nectar feeding in the hawkmoth Amphion floridensis. J. Exp. Biol. 202: 441-451.

Oonincx D. G. A. B., Van Itterbeeck J., Heetkamp M. J. W., Van Den Brand H., Van Loon J. J. A., Van Huis A. 2010. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 5: DOI:10.1371/journal.pone.0014445.

Padua-Resurreccion A. B., Banzon J. A. 1979. Fatty acid composition of the oil from progressively maturing bunches of coconut. Philip. J. Coconut Stud. 4: 1-15.

Pemberton R. W. 2005. Contemporary use of insects and other arthropods in traditional Korean medicine (Hanbang) in South Korea and elsewhere. In: Ecological Implications of Minilivestock (Paoletti M. G., Ed.), USA, pp. 459-474, Science, Enfield, NH.

Perlẻs C. 2006. Risorse selvatiche e risorse domestiche. In: Storia e geografia dell’alimentazione-Rosprse (Montanari M., Sabban F., Eds), Volume 1, UTET.

Pugach S., Crawford S. 1978. Seasonal changes in haemolymph amino acids, proteins and inorganic ions of a dessert millipede Orthoporus ornatus (Girard) (Diplopoda: Spirostreptidae). Can. J. Zool. 56: 1460-1465.

Punzo F. 1990. The haemolymph composition and neurochemistry of the spider wasp, Pepsis formosa (Say) (Hymenoptera, Pompilidae). Comp. Biochem. Physiol. A 96: 341-345.

Rajulu G. S. 1974. A comparative study of the organic components of the haemolymph of a millipede Cingalobolus bugnioni and a centipede Scutigera longicornis (Myriapoda). Symp. Zool. Soc. Lond. 32: 347-364.

Raksakantong P., Meeso N., Kubola J., Siriamornpun S. 2010. Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Res. Int. 43: 350-355.

Ramamurthy N., Kannan S. 2009. SEM-EDS analysis of soil and plant (Calotropis gigantea linn) collected from an industrial village, Cuddalore Dt., Tamil Nadu, India. Rom. J. Biophys. 19: 219-226.

Reichle D. E., Shaks M. H., Crossley D. A. 1969. Calcium, potassium, and sodium content of forest floor arthropods. Ann. Entomol. Soc. Am. 62: 57-62.

Rumpold B. A., Schluter O. K. 2013. Potential and challenges of insects as an innovative source for food and feed production. Inn. Food Sci. Emerg. Technol. 17: 1-11.

Sigmaplot. 2008. Stat Soft Inc. Version # 11, California.

Tommaseo-Ponzetta M. 2005. Insects: Food for Human Evolution. In: Ecological implications of minilivestock: potential of insects, rodents, frogs and snails (Paoletti M. G. (ed), pp. 141-161, Science Publisher, Enfield, NH.

Van Der Horst D. J., Oudejans R. C. H. M., Zandee D. I. 1972. Occurrence of cyclopropane fatty acids in females and eggs of the millipede Graphidostreptus tumuliporus (Karsch) (Myriapoda: Diplopoda) as contrasted by their absence in the males. Comp. Biochem. Physiol. B 41: 417-423.

Warne R. W., Charnov E. L. 2008. Reproductive allometry and the size-number trade-off for lizards. Am. Nat. 172: 80-98.

Wesener T., Sierw ald P. 2005. New giant pill-millipede species from the littoral forest of Madagascar (Diplopoda, Sphaerotheriida, Zoosphaerium). Zootaxa 1097: 1-60.

Wesener T., Raupach M. J., Sierw ald P. 2010. The origins of the giant pill-millipedes from Madagascar (Diplopoda: Sphaerotheriida: Arthrosphaeridae). Mol. Phylo. Evol. 57: 1184-1193.

Wheeler D. 1996.The role of nourishment in oogenesis. Ann. Rev. Entomol. 41: 407-431.

Xylander W. E. R. 2009. Physico-chemical properties of haemolymph of Chilopoda and Diplopoda (Myriapoda, Arthropoda): protein content, pH, osmolarity. Soil organisms 81: 431-439.