A method to increase the survival of probiotic bacteria Lactobacillus brevis at a lowered pH
PDF

Keywords

Fe3O4 nanoparticles
Lactobacillus brevis PCM 2570
probiotic bacteria
survival rate
low pH

How to Cite

Jurkowski, A., Kozioł, J. J., & Gronczewska, E. (2019). A method to increase the survival of probiotic bacteria Lactobacillus brevis at a lowered pH. Biological Letters, 54(1), 13–20. https://doi.org/10.2478/biolet-2019-0002

Abstract

Lactobacillus brevis PCM 2570 is a strain of lactic acid bacteria, i.e. probiotic bacteria whose major fermentation product is lactic acid. The efficiency of lactic acid production is limited by the value of ambient pH. This study aimed to increase the survival of this bacterial strain at a reduced pH (3.9), which would result in an increased yield of lactic acid fermentation. In our experiment the survival rate of probiotic bacteria L. brevis PCM 2570 was increased 1.2-fold to 6.96-fold due to the presence of Fe3O4 magnetic nanoparticles, as compared to the control. The minimum concentration of nanoparticles with a positive effect was 8 mg/ml, but the optimum concentration was 20 mg/ml.

https://doi.org/10.2478/biolet-2019-0002
PDF

References

Bai D., Zhao X., Li X., Xu S. 2004. Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants. Biochem. Eng. J. 18: 41–48.

Baker-Austin C., Dopson M. 2007. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 15: 165–171.

Datta R., Henry M. 2006. Lactic acid: recent advances in products, processes and technologies – a review. J. Chem. Technol. Biotechnol. 81: 1119–1129.

De Angelis M., Gobetti M. 2004. Environmental stress responses in Lactobacillus: A review. Proteomics 4: 106–122.

Gao C., Ma C., Xu P. 2011. Biotechnological routes based on lactic acid production from biomass. Biotechnol. Adv. 29: 930–939.

Jena J., Pradhan N., Dash B. P., Panda P. K., Mishra B. K. 2014. Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its bactericidal and antimicrobial activity. J. Saudi Chemi. Soc. 19: 661–666.

Jurkowski A., Zapotoczny B., Kozioł J. J., Dudek M. R. 2015. The effect of Fe3O4 nanoparticles on survival of probiotic bacteria Lactobacillus acidophilus PCM2499 in lower pH. Pol. J. Microbiol. 64: 307–310.

Kirsch K. M. 2014. The impact of CO2 on inorganic carbon supply and pH homeostasis in Coryne-bacterium glutamicum. PhD thesis, University of Cologne, Germany.

Moritz M., Geszke-Moritz M. 2013. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem. Eng. J. 228: 596–613.

Piard J. C., Desmazeaud M. 1991. Inhibiting factors produced by lactic acid bacteria. 1. Oxygen metabolites and catabolism end-products. Lait 71: 525–541.

Salminen S., Ouwehand A., Wright A. V., Daly C. 1993. Future aspects of research and product development of lactic acid bacteria. In: Lactic acid bacteria microbiological and functional aspects (Salminen S., von Wright A., Ouwehand A., Eds.), pp. 429–432,, Marcel Dekker, Inc. New York.

Sánchez B., Champomier-Vergès M-Ch., del Carmen Collado M., Anglade P., Baraige F., Sanz Y., de los Reyes-Gavilán C. G., Margolles A., Zagorec M. 2007. Low-pH Adaptation and the Acid Tolerance Response of Bifidobacterium longum Biotype longum. Appl. Environ. Microbiol. 73: 6450–6459.

San-Martin M., Pazos C., Coca J. 1992. Reactive extraction of lactic acid with alamine 336 in the presence of salts and lactose. J. Chem. Technol. Biotechnol. 54: 1–6.

Saravanan M., Barik S.K., Ali D. M., Prakash P., Pugazhendhi A. 2018. Synthesis of silver nano-particles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathogenesis 116: 221–226.

Senouci-Rezkallah K., Schmitt P., Jobin M. P. 2011. Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain. Food Microbiol. 28: 364–372.

Zhang W., Wang Y., Song Y., Wang T., Xu S., Peng Z., Lin X., Zhang L., Shen X. 2013. A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ. Microbiol. 15: 557–569.