Abstract
Interactions between 3 pathogenic fungi damaging horse-chestnut (Aesculus hippocastanum) leaves and fruits – Phyllosticta sphaeropsoidea, Phomopsis carposchiza, and Diaporthe padi – and the antagonistic fungus Trichoderma harzianum were studied to determine their mutual influence in vitro. Antibiosis of colonies developing on 5 nutrient media was tested. The 3 studied T. harzianum isolates differed in their antagonistic potential. although T. harzianum isolates significantly inhibited the growth of Phomopsis carposchiza, the mycelium growth of some of the re-isolates on fresh medium indicates an inadequate antagonistic effect of T. harzianum on this species. The tested Trichoderma isolates showed stronger antagonism towards the other pathogens, reflected in overgrowing of Phyllosticta sphaeropso-idea and Diaporthe padi and reducing their growth. Granulation of the cytoplasm and lysis of hyphae of the fungal pathogens were the most frequently observed effects of the interaction.
References
Bell D. K., Wells H. D., Markham C. R. 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology 72: 379‒382.
Calistru C., McLean M., Berjak P. 1997. In vitro studies on potential for biological control of Aspergillus flavus and Fusarium moniliforme by Trichoderma species. Mycopathologia 137: 115‒124.
Campbell R., Clor A. 1985. Soil moisture affects the interaction between Gaeumannomyces graminis var. tritici and antagonistic bacteria. Soil Biol. Biochem. 17: 441‒446.
Chand T., Logan C. 1984. Antagonists and parasites of Rhizoctonia solani and their efficacy in reducing stem canker of potato under controlled conditions. Trans. Br. Mycol. Soc. 83: 107‒112.
Chapla V. M., Zeraik M. L., Ximenes V. F., Zanardi L. M., Lopes M. N., Cavalheiro A. J., Silva D. H., Young M. C., Fonseca L. M., Bolzani V. S., Araújo A. R. 2014. Bioactive secondary metabolites from Phomopsis sp., an endophytic fungus from Senna spectabilis. Molecules 19: 6597‒6608.
Dhingra O. D., Sinclair J. B. 1995. Basic plant pathology methods. CRC Press, Boca Raton, FL.
Dickinson C. H., Skidmore A. M. 1976. Interactions between germinating spores of Septoria nodorum and phylloplane fungi. Trans. Br. Mycol. Soc. 66: 45‒56.
Dudek-Makuch M., Studzińska-Sroka E. 2015. Horse chestnut – efficacy and safety in chronic venous insufficiency: an overview. Rev. Bras. Farmacogn. 25: 533‒541.
Elad Y., Barak R., Chet I., Henis Y. 1983. Ultrastructural studies of the interaction between Trichoderma spp. and plant pathogenic fungi. Phytopathol. Z. 107: 168‒175.
Ellis M. B., Ellis J. P. 1985. Microfungi on land plants. An identification handbook. Croom Helm, London and Sydney.
Fialho M. B., Toffano L., Pedroso M. P., Augusto F., Pascholati S. F. 2010. Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World J. Microbiol. Biotechnol. 26: 925‒932.
Harman G. E., Latorre B., Agosin E., San Martin R., Riegel D. G., Nielsen P. A., Tronsmo A., Pearson R. C. 1996. Biological and integrated control of Botrytis bunch rot of grape using Trichoderma spp. Biol. Control 7: 259‒266.
Kamhawy M. A. M. 2006. Host range and control of Phyllosticta sp. the cause of banana leaf spot and blight. Egypt. J. Phytopathol. 34: 1‒15.
Koch E., Enders M., Ullrich C., Molitor D., Berkelmann-Löhnertz B. 2013. Effect of Primula root and other plant extracts on infection structure formation of Phyllosticta ampelicida (asexual stage of Guignardia bidwellii) and on black rot disease of grapevine in the greenhouse. J. Plant Dis. Protect. 120: 26‒33.
Küçük Ç., Kivanç M., Kinaci E., Kinaci G. 2007. Efficacy of Trichoderma harzianum (Rifai) on inhibition of ascochyta blight disease of chickpea. Ann. Microbiol. 57: 665‒668.
Kupper K. C., Correa E. B., Moretto C., Bettiol W., de Goes A. 2011. Control of Guignardia citricarpa by Bacillus subtilis and Trichoderma spp. Rev. Bras. Frutic. 33: 1111‒1118.
Lo C. T., Nelson E. B., Harman G. E. 1997. Improved biocontrol efficacy of Trichoderma harzianum 1295-22 for foliar phases of turf diseases by use of spray applications. Plant Dis. 81: 1132‒1138.
Lorito M., Harman G. E., Hayes C. K., Broadway R. M., Tronsmo A., Woo S. L., Di Pietro A. 1993. Chitinolytic enzymes produced by Trichoderma harzianum: Antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83: 302‒307.
Monte E. 2001. Understanding Trichoderma: between biotechnology and microbial ecology. Int. Microbiol. 4: 1‒4.
Orlandelli R. C., de Almeida T. T., Alberto R. N., Polonio J. C., Azevedo J. L., Pamphile J. A. 2015. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw. Braz. J. Microbiol. 46: 359‒366.
Padmaja M., Swathi J., Narendra K., Sowjanya K. M., Jawahar Babu P., Krishna Satya A. 2013. Trichoderma sp. as a microbial antagonist against Rhizoctonia solani. Int. J. Pharm. Pharm. Sci. 5: 322‒325.
Pezet R., Pont V., Tabacchi R. 1999. Simple analysis of 6-pentyl-α-pyrone, a major antifungal metabolite of Trichoderma spp., useful for testing the antagonistic activity of these fungi. Phytochem. Anal. 10: 285‒288.
Phillips A. J. L. 1986. Factors affecting the parasitic activity of Gliocladium virens on sclerotia of Sclerotinia sclerotiorum and a note on its host range. J. Phytopathol. 116: 212‒220.
Poovendran P., Kalaigandhi V., Parivuguna V. 2011. In vitro study of antagonistic effect of Trichoderma sp., on tea plant pathogen, Phomopsis theae. Arch. Appl. Sci. Res. 3: 352‒358.
Prokinová E. 1996. Biologická ochrana proti houbovým chorobám rostlin [Biological control of fungal plant diseases]. Studijní informace ÚZPI Praha – Rostlinná výroba 7: 1‒39 (in Czech).
Rifai M. A. 1969. A revision of the genus Trichoderma. Mycol. Papers 116: 1‒56.
Royse D. J., Ries S. M. 1978. The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Phytopathology 68: 603‒607.
Silva-Hudges A. F., Wedge D. E., Cantrell C. L., Carvalho C. R., Pan Z., Moraes R. M., Madoxx V. L., Rosa L. H. 2015. Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States. Microbiol. Res. 175: 67‒77.
Skidmore A. M., Dickinson C. H. 1976. Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Trans. Br. Mycol. Soc. 66: 57‒64.
Sy A. A., Norng K., Albertini L., Petitiprez M. 1984. Recherches sur la lutte biologique contre Pyricularia oryzae Cav. IV. Influence du pH sur ľaptitude de germes antagonistes à inhiber in vitro la croissance mycélienne du parasite [Research on biological control of Pyricularia oryzae Cav. IV. Effect of pH on the ability of antagonistic microorganisms to inhibit mycelial growth of the parasite in vitro]. Cryptogamie Mycol. 5: 59‒65 (in French).
Tronsmo A., Dennis C. 1978. Effect of temperature on antagonistic properties of Trichoderma species. Trans. Br. Mycol. Soc. 71: 469‒474.
Uecker F. A. 1988. A world list of Phomopsis names with notes on nomenclature, morphology and biology. Mycol. Mem. 13: 1‒231.
van der Aa H. A. 1973. Studies in Phyllosticta I. Stud. Mycol. 5: 1‒110.
Whipps J. M. 1987. Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytol. 107: 127‒142.
Whipps J. M., Lumsden R. D. 1991. Biological control of Pythium species. Biocontrol Sci. Techn. 1: 75‒90.
Wilkinson J. A., Brown A. M. G. 1999. Horse chestnut – Aesculus hippocastanum: potential applications in cosmetics skin-care products. Int. J. Cosmet. Sci. 21: 437‒447.
Woo S. L., Ruocco M., Vinale F., Nigro M., Marra R., Lombardi N., Pascale A., Lanzuise S., Manganiello G., Lorito M. 2014. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8: 71‒126.
Zimand G., Elad Y., Chet I. 1996. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology 86: 1255‒1260.
License
Ten utwór jest dostępny na licencji Creative Commons Uznanie autorstwa - Bez utworów zależnych 4.0 Międzynarodowe.