Effects of salt stress on proline content, expression of delta-1-pyrroline-5-carboxylate synthetase, and activities of catalase and ascorbate peroxidase in transgenic tobacco plants
PDF

Keywords

tobacco
salt stress
proline
catalase
ascorbate peroxidase

How to Cite

Razavizadeh, R., & Ehsanpour, A. (2010). Effects of salt stress on proline content, expression of delta-1-pyrroline-5-carboxylate synthetase, and activities of catalase and ascorbate peroxidase in transgenic tobacco plants. Biological Letters, 46(2), 63–75. https://doi.org/10.2478/v10120-009-0002-4

Abstract

In arid and semiarid regions, soil salinity limits crop production. Proline accumulation in transgenic plants results in increased stress tolerance, but the underlying mechanism was unclear. To elucidate it, effects of salt stress on the expression pattern of Δ1-pyrroline-5-carboxylate synthetase (P5CS), proline content, catalase (CAT), and ascorbate peroxidase (APX) activities were analyzed in transgenic tobacco (Nicotiana tabacum cv. Wisconsin). Transgenic tobacco plants containing CaMV 35S promoter and the P5CS gene from moth bean (Vigna aconitifolia), linked to the NPTII gene, were cultured in vitro with or without 300 mM NaCl. The expression pattern of P5CS was evaluated using semiquantitative RT-PCR (reverse transcription-polymerase chain reaction). Time-course experiments showed an increase in proline content after 4 h of the treatment. The level of P5CS transcripts was increased significantly in leaves and roots of transgenic plants after 24 and 48 h of treatment. This rise in transcripts was concomitant with the highest increase in proline content. In addition, CAT and APX activities increased under salt stress, and their highest activities were observed after 24 and 48 h of NaCl treatment. These results suggest that P5CS is an inducible gene regulating the activities of CAT and APX and the accumulation of proline in plants subjected to salt stress.

https://doi.org/10.2478/v10120-009-0002-4
PDF

References

Aebi H. 1984. Catalase in vitro. Methods Enzymol. 105: 121-126.

Alia P. S. P., Pardha Saradhi P., Mohanty P. 1991. Proline enhances primary photochemical activities in isolated thylakoid membranes of Brassica juncea by arresting photoinhibitory damage. Biochem. Biophys. Res. Commun. 181: 1238-1244.

Alscher R. G., Erturk N., Heath L. S. 2002. Role of superoxide dismutases in controlling oxidative stress in plants. J. Exp. Bot. 53:1331-1341.

Bates L., Waldren R. P., Tear I. P. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39: 205-207.

Bohnert H. J., Shen B. 1999. Transformation and compatible solutes. Sci. Hortic. 78: 237-260.

Canvin D. T. 1990. Photorespiration and CO2 concentrating mechanisms. In: Plant Physiology, Biochemistry, and Molecular Biology (Dennis D. T., Turpin D. H, Eds), pp. 253-273, Longman Scientific and Technical, Harlow.

Cherian S., Reddy M. P. 2003. Evaluation of NaCl tolerance in the callus cultures of Suaeda nudiflora. Moq. Biol. Plantarum. 46: 193-198.

Chinnusamy V., Jagendorf A., Zhu J. K. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45: 437-448.

Djilianov D., Georgieva T., Moyankova D., Atanassov A., Shinozaki K., Smeeken S. C. M., Verma D. P. S., Murata N. 2005. Improved abiotic stress tolerance in plants by accumulation of osmoprotectants: gene transfer approach. Biotechnol. & Biotechnol. Special Issue. 63-75.

Gomez J. M., Hernandez J. A., Jimenez A., Del Rio L. A., Seville F. 1999 Differential response of antioxidative enzymes of chloroplast and mitochondria to long term NaCl stress of pea plants. Free Radical Res. 31: 11-18.

Gosset D. R., Millhollon E. P., Lucas M. C. 1994. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci. 34: 706-714.

Guan L., Scandalios J. G. 1996. Molecular evolution of maize catalases and their relationship to other eukaryotic and prokaryotic catalases. J. Mol. Evol. 42: 570-579.

Han K. H., Hwang C. H. 2003. Salt tolerance enhanced by transformation of a P5CS gene in carrot. J. Plant Biotechnol. 5: 149-153.

Hernandez J. A., Ferrer M. A., Jimenez A., Barcelo A. R., Seville F. 2001. Antioxidant systems and O·_ 2 /H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127: 817-83.

Hong Z., Lakkineni K., Zhang Z., Verma D. P. S. 2000. Removal of feedback inhibition of delta (1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 122: 1129-1136.

Hu Ch. A., Delauney A. J., Verma D. P. S. 1992. A bifunctional enzyme (Δ1 pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Plant Biol. 89: 9354-9358.

Hur J., Jung K. H., Lee C. H., An G. H. 2004. Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci. 167: 417-426.

Jithesh M. N., Prashanth S. R., Sivaprakash K. R., Parida A. K. 2006. Antioxidative response mechanisms in halophytes: their role in stress defence. J. Genet. 85: 237-255.

Khedr A. H. A., Abbas M. A., Wahid A. A. A., Quick W. P., Abogadallah G. M. 2003. Proline induces the expression of salt stress responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt stress. J. Exp. Bot. 54: 2553-2562.

Kishor P. B. K., Hong Z., Miao G. H., Hu C. A. A., Verma D. P. S. 1995. Overexpression of [delta]-pyrroline-5- carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394.

Kishor P. B. K., Sangam S., Amrutha R. N., Sri Laxmi P., Naidu K. R., Rao K. R., Theripan P., Sreenivasula N. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implication in plant growth and abiotic stress tolerance. Current Science. 108: 427-437.

Lee D. H., Kim Y. S., Lee C. B. 2001. The inductive responses of the antioxidant enzymes by salt stress in rice (Oryza sativa L.). J. Plant Physiol. 158: 737-745.

Maggio A., Miyazakil S., Veronese P., Tomomichi Fujita T., Ibeas J., Damszl B., Narasimhan M. L., Hasegawal P. M., Joly R. J., Bressan R. A. 2002. Does proline accumulation play an active role in stress-induced growth reduction? The Plant Journal. 31: 699-712.

Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plantarum. 159: 473-479.

Nakano Y., Asada A. 1981. Hydrogen peroxide is scavenged by ascorbate- specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22: 867-880.

Nanjo T., Kobayashi M., Yoshiba Y., Yukika S., Keishiro W., Tsukaya H., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K. 1999. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. The Plant Journal. 18: 185-193.

Okuma E., Soeda K., Tada M., Murata Y. 2000. Exogenous proline mitigates the inhibition of growth of Nicotiana tabacum cultured cells under saline conditions. Soil Sci. Plant Nutr. 46: 257-263.

Parvaiz A., Satyawati S. 2008. Salt stress and phyto-biochemical responses of plants - a review. Plant Soil Environ. 54: 89-99.

Roosens N. H., Bitar F. A., Loenders K., Angenon G., Jacobs M. 2002. Overexpression of ornithine-δ-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol. Breeding. 9: 73-80.

Roxas V. P., Smith R. K., Allen E. R., Allen R. D. 1997. Over expression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 15: 988-991.

Roxas V. P., Lodhi S. A., Garrett D. K., Mahan J. R., Allen R. D. 2000. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol. 41: 1229-1234.

Sawahel W. A., Hassan A. H. 2002. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol. Lett. 24: 721-725.

Sharp R. E., Boyer J. S., Nguyen H. T., Hsiao T. C. 1996. Genetically engineered plants resistant to soil drying and salt stress: how to interpret osmotic relations. Plant Physiol. 110: 1051-1053.

Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y., Yoshimura K. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53: 1305-1319.

Siripornadulsil S., Traina S., Verma D. P. S., Sayre R. T. 2002. Proline action on heavy metal detoxification in microalgae. Plant Cell. 14: 2837-2847.

Smirnoff N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125:27-58.

Vanrensburg L., Kruger G. H., Kruger H. 1993. Proline accumulation as drough- tolerance selection criterion: Its relationship to membrane integrity and chloroplast ultra-structure in Nicotiana tabacum. L. J. Plant Physiol. 141: 188-194.

Verbruggen N., Hermans C. 2008. Proline accumulation in plants: a review. Amino Acids. 35: 753-759.

Wang J., Zhang H., Allen R. D. 1999. Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol. 40: 725-732.

Wang Z. L., Li H. P., Fredricksen M., Gong Z. Z., Kim C. S., Zahng C. Q. 2004. Expressed sequence tags from Thellungiella halophila, a new model to study plant salt tolerance. Plant Sci. 166: 609-616.

Willekens H., Inz'E D., Van Montagu M., Van Camp W. 1995. Catalase in plants. Mol. Breeding. 1: 207-228.

Xiong L., Zhu J. K. 2002. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 25: 131-139.

Zhang C. S., Lu Q., Verma D. P. S. 1995. Removal of feedback inhibition of delta1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J. Biol. Chem. 270: 20491-20496.

Zhang C. S., Lu Q., Verma D. P. S. 1997. Characterization of D1- pyrroline-5-carboxylate synthetase gene promoter in transgenic Arabidopsis thaliana subjected to water stress. Plant Sci. 129: 81-89.

Zhu B., Su J., Chang M., Verma D. P. S., Fan Y. L., Wu R. 1998. Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci. 139: 41-48.