Microorganisms in the oribatid mite Hermannia gibba (C. L. Koch, 1839) (Acari: Oribatida: Hermanniidae)
PDF

Keywords

Hermannia gibba
endosymbionts
ovary
testis
transovarial transmission

How to Cite

Liana, M., & Witaliński, W. (2011). Microorganisms in the oribatid mite Hermannia gibba (C. L. Koch, 1839) (Acari: Oribatida: Hermanniidae). Biological Letters, 47(1), 37–43. https://doi.org/10.2478/v10120-009-0018-9

Abstract

Symbiotic microorganisms associated with arthropods are known to play a significant role in the life of their hosts. Most commonly, the symbionts improve their host's food digestion and modify their meiosis/reproduction. The usual mode of parent-to-offspring transmission of the symbionts is transovarial transmission (vertical) via oocytes. Using transmission electron microscopy, we found extracellular yeast-like and bacteroid microorganisms in food boli, as well as intracellular symbiotic bacteria within cells of the digestive tract and in reproductive cells in both sexes of the oribatid mite Hermannia gibba. In the digestive tract, the scarce bacteria were lying individually within midgut cells. The bacteria observed in developing oocytes were numerous and formed large aggregates close to the nuclear envelope and clusters of mitochondria. In spermatocytes we found a few single bacteria located at the cell periphery. The bacteria in the digestive cells may assist in digestion of plant food, whereas the meiotic drive function of the gonad-invading microbes is uncertain. The studied mite species is biparental and its sex ratio is not biased.

https://doi.org/10.2478/v10120-009-0018-9
PDF

References

Chigira A., Miura K. 2005. Detection of ‘Candidatus Cardinium’ bacteria from the haploid host Brevipalpus californicus (Acari: Tenuipalpidae) and effect on the host. Exp. Appl. Acarol. 37: 107-116.

Douglas A. E. 1989. Mycetocyte symbiosis in insects. Biol. Rev. Camb. Philos. Soc. 64: 409-434.

Duron O., Hurst D. D. G., Hornett A. E., Josling A. J., Engelstadter J. 2008. High incidence of the maternally inherited bacterium Cardinium in spiders. Mol. Ecol. 17: 1427-1437.

Erban T., Hubert J. 2008. Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. Exp. Appl. Acarol. 44: 199-212.

Goettler W., Kaltenpoth M., Herzner G., Strohm E. 2007. Morphology and ultrastructure of a bacteria cultivation organ: the antennal glands of female European beewolves, Philanthus triangulum (Hymenoptera, Crabronidae). Arthropod Struct. Develop. 36: 1-9.

Groot T. V. M., Breeuwer J. A. J. 2006. Cardinium symbionts induce haploid thelytoky in most clones of three closely related Brevipalpus species. Exp. Appl. Acarol. 39: 257-271.

Gullan P. J., Cranston P. S. 1994. The Insects: An Outline of Entomology. Chapman and Hall, London.

Kageyama D., Narita S., Noda H. 2008. Transfection of feminizing Wolbachia endosymbionts of the butterfly, Eurema hecabe, into the cell culture and various immature stages of the silk-moth, Bombyx mori. Microb. Ecol. 56: 733-741.

Karnovsky M. J. 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27: 137A-138A.

Kenyon S. G., Hunter M. S. 2007. Manipulation of oviposition choice of the parasitoid wasp Encarsia pergandiella, by the endosymbiotic bacterium Cardinium. J. Evol. Biol. 20: 707-716.

Liana M. 2000. Morphology of the ovary and intracellular translocation of symbiotic bacteroids in hymenopterans from the genera Muscidifurax (Pteromalidae) and Aphytis (Aphelinidae). Acta Biol. Cracov. 42 (suppl. 1): 51.

Liana M. 2004. Structure of reproductive systems in mites from Astigmata and Oribatida suborders, and Astigmata phylogeny. PhD Thesis, Jagiellonian University, Kraków, Poland (in Polish).

Nakajima Y., Saido-Sakanaka H., Ogihara K., Taylor D. M., Yamakawa M. 2005. Antibacterial peptides are secreted into the midgut lumen to provide antibacterial midgut defense in the soft tick, Ornithodoros moubata (Acari: Argasidae). Appl. Entomol. Zool. 40: 391-397.

Norton R. A., Kethley J. B., Johnston D. E., OConnor B. M. 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Evolution and Diversity of Sex Ratio in Insects and Mites (Wrensch D., Ebbret M., Eds), pp. 8-99, Chapman and Hall, New York.

Scott J. J., Oh D-Ch., Yuceer M. C., Klepzig K. D., Clardy J., Currie C. R. 2008. Bacterial protection of beetle-fungus mutualism. Science 322: 63.

Smrž J., Soukalová H. 2008. Mycophagous mites (Acari: Oribatida and Acaridida) and their cooperation with chitinolytic bacteria. In: Integrative Acarology. Proceedings of the 6th European Congress, EURAAC, Montpellier 2008 (Bertrand M., Kreiter S., McCoy K. D., Migeon A., Navajas M., Tixier M.-S., Vial L., Eds), 491 pp. 374-377.

Stouthamer R., Kazmer D. J. 1994. Cytogenetics of microbe associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73: 317-327.

Stouthamer R., Werren J. H. 1993. Microorganisms associated with parthenogenesis in wasps of the genus Trichogramma. J. Invert. Pathol. 61: 6-9.

Stouthamer R., Luck R. F., Hamilton W. D. 1990. Antibiotics cause parthenogenetic Trichogramma to revert to sex. Proc. Natl. Acad. Sci. USA. 87: 2424-2427.

Stouthamer R., Breeuwer J. A. J., Hurst G. D. D. 1999. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53: 71-102.

Taberly G. 1958. Les nombres chromosomiques chez quelques especes d'Oribates (Acariens [The chromosome number in certain species of Oribatida (Acari)]. R. Acad. Sci. 246: 3284-3285 (in French).

Terry R. S., Smith J. E., Sharpe R. G., Rigaud T., Littlewood D. T. J., Ironside J. E., Rollinson D., Bouchon D., MacNeil C., Dick J. T. A., Dunn A. 2004. Widespread vertical transmission and associated host sex-ratio distortion within the eukaryotic phylum Microspora. Proc. R. Soc. Lond. B. 271: 1783-1789.

Weeks A. R., Breeuwer J. A. J. 2001. Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc. R. Soc. Lond. B. 268: 2245-2251.

Weeks A. R., Stouthamer R. 2004. Increased fecundity associated with infection by a Cytophaga-like intracellular bacterium in the predatory mite, Metaseiulus occidentalis. Proc. R. Soc. Lond. B. (Suppl.) 271: S193-S195.

Weeks A. R., Reynolds K. T., Hoffmann A. A. 2002. Wolbachia dynamics and host effect: what has (and has not) been demonstrated? Trends Ecol. Evol. 17: 257-262.

Werren J. H., Windsor D., Guo L. 1995. Distribution of Wolbachia among Neotropical arthropods. Proc. R. Soc. Lond. B. 262: 197-204.

Zchori-Fein E., Faktor O., Zeidan M., Gottlieb Y., Czosnek H., Rosen Y. 1995. Parthenogenesis-inducing microorganisms in Aphytis (Hymenoptera: Aphelinidae). Insect Mol. Biol. 4: 173-178.

Zchori-Fein E., Perlman S. J. 2004. Distribution of the bacterial symbiont Cardinium in arthropods. Mol. Ecol. 13: 2009-2016.