Abstract
A total of 137 strains isolated from 67 mixed bacterial infections were examined for production and interchangeability of siderophores. The isolates comprised 109 strains belonging to 15 species of Enterobacteriaceae and 28 isolates of 6 species of non-fermenting rods. In 36 mixed infections (53.7%), the strains secreted siderophores of the same type. This concerned mostly strains belonging to the Enterobacteriaceae (46.3%), which produced enterobactin. We selected 37 pairs of strains that produced different siderophores. The strains examined were not able to use siderophores produced by the other isolate of the pair, except for 3 strains of Pseudomonas aeruginosa that used chelators excreted by enterobactin-producing E. coli. Our research indicates that in mixed polymicrobial infections the interchangeability of siderophores is possible, although it seems to be rare. More common is the production and secretion of the same chelator by strains participating in one infection, which definitely leads to an increase in the amount of iron chelator at the site of infection and, consequently, may enhance the virulence potential of bacteria, as the amount of siderophore seems to be directly related to the pathogenicity of a strain.
References
Andrews S. C., Robinson A. K., Rodríguez-Quiñones F. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27: 215-237.
Arnow L. E. 1937. Colorimetric determination of the component of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 118: 531-541.
Budzikiewicz H. 1997. Siderophores of fluorescent pseudomonads. Z. Naturforsch. 52c: 713-720.
Csáky T. Z. 1948. On the estimation of bound hydroxylamine in biological materials. Acta Chem. Scand. 2: 450-454.
Dean C. R., Poole K. 1993. Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa. J. Bacteriol. 175: 317-324.
Dorsey C. W., Tomaras A. P., Connerly P. L., Tolmasky M. E., Crosa J. H., Actis L. A. 2004. The siderophore-mediated iron acquisition systems of Acinetobacter baumannii ATCC 19606 and Vibrio anguillarum 775 are structurally and functionally related. Microbiology 150: 3657-3667.
Faraldo-Gómez J. D., Sansom M. S. 2003. Acquisition of siderophores in Gram-negative bacteria. Nat. Rev. Mol. Cell Biol. 4: 105-116.
Haag H., Hantke K., Drechsel H., Stojiljikovic I., Jung G., Zähner H. 1993. Purification of yersiniabactin: a siderophore and possible virulence factor of Yersinia enterocolitica. J. Gen. Microbiol. 139: 2159-2165.
Hartmann H., Eltschig H. K., Wurtz H., Hantke K., Rakin A., Yazdi A. S., Matteoli G., Bohn E., Autenrieth I. B., Karhausen J., Neumann D., Colgan S. P., Kempf V. A. J. 2008. Hypoxia-independent activation of HIF-1 by Enterobacteriaceae and their siderophores. Gastroenterology 134: 756-767.
Hope A. C. A. 1968. A simplified Monte Carlo significance test procedure. J. R. Statist. Soc. Ser. 30: 580-598.
Karch H., Schubert S., Zhang D., Zhang W., Schmidt H., ÖlschlägerT, Hacker J. 1999. A genomic island, termed high-pathogenicity island, is present in certain non-O157 Shiga toxin-producing Escherichia coli clonal lineages. Infect. Immun. 67: 5094-6001.
Lawlor M. S., O'Connor C., Miller V. L. 2007. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect. Immun. 75: 1463-1472.
Manninen M., Mattila-Sandholm T. 1994. Methods for the detection of Pseudomonas siderophores. J. Microbiol. Methods. 19: 223-234.
Meleney F. L. 1931. Bacterial synergism in disease processes. Ann. Surg. 94: 961-981.
Meyer J. M., Valerie A. G., Baida N., Gardan L., Izard D., Lemanceau P., Achouak W., Palleroni N. J. 2002. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl. Environ. Microbiol. 68: 2745-2753.
Mossialos D., Amoutzias G. D. 2008. Role of siderophores in cystic fibrosis pathogenesis: foes or friends? Int. J. Med. Microbiol. 299: 87-98.
Nelson A. L., Ratner A. J., Barasch J., Weiser J. N. 2007. Interleukin-8 secretion in response to aferric enterobactin is potentiated by siderocalin. Infect. Immun. 75: 3160-3168.
Okeke I. N., Scaletsky I. C. A., Soars E. H., Macfarlane L. R., Torress A. G. 2004. Molecular epidemiology of the iron utilization genes of enteroaggregative Escherichia coli. J. Clin. Microbiol. 42: 36-44.
Podschun R., Ullmann U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11: 589-603.
Rabsch W., Winkelmann G. 1991. The specificity of bacterial siderophore receptors probed by bioassays. BioMetals 4: 244-250.
Reissbrodt R., Rabsch W. 1988. Further differentiation of Enterobacteriaceae by means of siderophore-pattern analysis. Zbl. Bakt. Hyg. A. 268: 306-317.
Różalska B, Lisiecki P., Sadowska B., Mikucki J., Rudnicka W. 1998. The virulence of Staphylococcus aureus isolates differing by siderophore production. Acta Microbiol. Pol. 47: 185-194.
Schubert S., Picard B., Gouriou S., Heesemann J., Denamur E. 2002. Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections. Infect. Immun. 70: 5335-5337.
Schwyn B., Neilands J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56.
Visca P., Imperi F., Lamont I. L. 2007. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 15: 22-30.
Vokes, S. A., Reeves S. A., Torres A. G., Payne S. M. 1999. The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol. Microbiol. 33: 63-73.
Weaver V., Kolter R. 2004. Burkholderia spp. alter Pseudomonas aeruginosa physiology through iron sequestration. J. Bacteriol. 186: 2376-2384.
Weinberg E. D. 1978. Iron and infection. Microbiol. Rev. 42: 45-66.
Xiao R., Kisaalita W. S. 1997. Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin. Microbiology 143: 2509-2515.
Yamamoto S., Okujo N., Sakakibara Y. 1994. Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii. Arch. Microbiol. 162: 249-254.
License
Ten utwór jest dostępny na licencji Creative Commons Uznanie autorstwa - Bez utworów zależnych 4.0 Międzynarodowe.