Changes in erythrocyte membrane permeability induced by verapamil, chlorpromazine, and their combinations with amphotericin B
PDF

Keywords

verapamil
chlorpromazine
amphotericin B
synergy
erythrocyte membrane hemolysis

How to Cite

Knopik-Skrocka, A., Bielawski, J., Chowański, S., & Walkowiak, P. (2012). Changes in erythrocyte membrane permeability induced by verapamil, chlorpromazine, and their combinations with amphotericin B. Biological Letters, 48(2), 225–241. https://doi.org/10.2478/v10120-011-0021-9

Number of views: 64


Number of downloads: 19

Abstract

Hemolysis induced by 2 amphipathic agents, verapamil and chlorpromazine, was investigated in various incubation conditions. Changes in absorbance of erythrocyte suspension were monitored by absorption spectrophotometry at a wavelength of 590 nm. The hemolysis induced by verapamil or chlorpromazine is of the permeability type. The resistance of erythrocytes to verapamil is much higher than their resistance to chlorpromazine. No evident difference is found between human and pig erythrocytes in their resistance to verapamil. Only a small decrease in the rate of hemolysis induced by verapamil is observed in isotonic CaCl2, MgCl2 or K2SO4 solutions, compared to 160 mM KCl (the standard incubation medium). The changes in hemolytic activity of chlorpromazine in the presence of the divalent cations and anions are less evident. No decrease in hemolytic activity of chlorpromazine and verapamil is observed in the sucrose medium. The hemolytic activity of both the agents increases when they act in combination with polyene antibiotic amphotericin B. The results indicate a strong synergy between amphotericin B and verapamil or chlorpromazine. By contrast, a combined effect of verapamil and chlorpromazine on erythrocytes leads to a decrease in their hemolytic activity. This indicates antagonism between verapamil and chlorpromazine.

https://doi.org/10.2478/v10120-011-0021-9
PDF

References

Aanismaa P., Seelig A. 2007. P-glycoprotein kinetics measured in plasma membrane vesicles and living cells. Biochemistry 46: 3394-3404.

Ahyayauch H., Gonii F. M., Bennouna M. 2003. pH-dependent effects of chlorpromazine on liposomes and erythrocyte membranes. J. Liposome Res. 13: 147-155.

Anteneodo C., Bisch P. M., Ferreira Marques J. 1995. Interaction of chlorpromazine with phospholipid membranes. Eur. Biophys. J. 23: 447-452.

Bashford C. L., Alder G. M., Graham J. M., Menestrina G., Pasternak C. A. 1988. Ion modulation in membrane permeability: effect of cations on intact cells and on cells and phospholipid bilayers treated with pore-forming agents. J. Membr. Biol. 103: 79-94.

Bebawy M., Morris M. B., Roufogalis B. D. 2001. Selective modulation of P-glycoprotein mediated drug resistance. Br. J. Cancer 85: 1998-2003.

Bennouna M., Ferreira-Marques J., Banerjee S., Caspers J., Ruysschaert J. M. 1997. Interaction of chlorpromazine with phospholipid membranes: a monolayer and a microelectrophoresis approach. Langmuir 13: 6533-6539.

Berenbaum M. C. 1989. What is synergy? Pharmacol. Rev. 41: 93-141.

Bielawski J. 1990. Two types of hemolytic activity of detergents. Biochim. Biophys. Acta 1035: 214-217.

Biery E., Giri S. N., Jain N. C. 1978. Rates of chlorpromazine-induced hemolysis in seven species of animals. J. Vet. Pharmacol. Therapeut. 1: 149-154.

Bolard J., Legrand P., Heitz F., Cybulska B. 1991. On-sided action of amphotericin B on cholesterol-contaning membranes is determined by itself-association in the medium. Biochemistry 30: 5707-5715.

Brajtburg J., Medoff G., Kobayashi G., Elberg S., Finegold C. 1980. Permeabilizing and hemolytic action of large and small polyene antibiotics on human erythrocytes. Antimicrob. Agents Chemother. 18:586-592.

Cardenas M. L. 2001. The competition plot: a kinetic method to assess whether an enzyme that catalyses multiple reactions does so at a unique site. Methods 24: 175-180.

Castaing M., Loiseau A., Cornish-Bowden A., 2007. Synergy between verapamil and other multidrug-resistance modulators in model membranes. J. Biosci. 32: 737-746.

Castaing M., Loiseau A., Mulliert G. 2003b. Interactions between verapamil and neutral and acidic liposomes: effects of the ionic strength. Biochim. Biophys. Acta 1611: 107-114.

Castaing M., Louse A., Gouda L. 2003a. Effects of cholesterol on dye leakage induced by multidrug-resistance modulators from anionic liposomes. Eur. J. Pharmacol. Sci. 18: 81-88.

Charbonneau C., Fournier I., Dufresne S., Barwicz J., Tancrede P. 2001. The interactions of amphotericin B with various sterols in relation to its possible use in anticancer therapy. Biophys. Chem. 91:125-133.

Chen J. Y, Brunauer L. S., Chu F. C., Helsel C. M., Gedde M. M., Huestis W. H. 2003. Selective amphipathic nature of chlorpromazine binding to plasma membrane bilayers. Biochim. Biophys. Acta 1616: 95-105.

Chen J. Y., Huestis W. H. 1997. Role of membrane lipid distribution in chlorpromazine-induced shape change of human erythrocytes. Biochim. Biophys. Acta 1323: 299-309.

Chevillard Ch, Cardenas M. L., Cornish-Bowden A. 1993. The competition plot: a simple test of whether two reactions occur at the same active site. Biochem. J. 289: 599-604.

Cybulska B., Bolard J., Seksek O., Czerwiński E., Borowski E. 1995. Identification of the structural elements of amphotericin B and other polyene macrolide antibiotics of the heptaene group influencing the ionic selectivity of the permeability pathways formed in the red blood cell membrane. Biochim. Biophys. Acta 1240: 167-178.

Deuticke B. 1968. Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim. Biophys. Acta 163: 494-500.

Dorson P. G., Crismon M. L. 1988. Chlorpromazine accumulation and sudden death in patient with renal insufficiency. Drug Intell Clin. Pharm. 22: 776-778.

Drori S., Eytan G. D., Assaraf Y. 1995. Potentation of anticancer-drug cytotoxicity by multidrug-resistance chemosensitizers involves alterations in membrane fluidity leading to increased membrane permeability. Eur. J. Biochem. 228: 1020-1029.

Hagerstrand H., Mrówczyńska L., Salzer U., Prohaska R., Michelsen K., Kralj-Iglic V., Iglic A. 2006. Curvature-dependent lateral distribution of raft markers in the human erythrocyte membrane. Mol. Membr. Biol. 23: 277-288.

Hendrich A., Lichacz K., Burek A., Michalak K. 2002. Thioridazine induces erythrocyte stomatocytosis due to interactions with negatively charged lipids. Cell. Mol. Biol. Lett. 7: 1081-1086.

Katsu T., Imamura T., Komagoe K., Masuda K., Mizushima T. 2007. Simultaneous measurements of K+ and calcein release from liposomes and the determination of pore size formed in a membrane. Analytic. Sci. 23: 517-522.

Khasnobis A. K., Saha J., Mukherjee B. P. 1982. In vitro hemolytic property of substituted phenothiazines. Ind. J. Pharmacol. 14: 305-308.

Knopik-Skrocka A., Bielawski J. 2002. The mechanism of the hemolytic activity of polyene antibiotics. Cell. Mol. Biol. Lett. 7: 31-48.

Knopik-Skrocka A., Bielawski J. 2005. Differences in amphotericin B-induced hemolysis between human erythrocytes from male and female donors. Biological Lett. 42: 49-60.

Knopik-Skrocka A., Bielawski J., Głąb M., Klafaczyńska A., Wulkiewicz M. 2003. A kinetics study of pig erythrocyte hemolysis induced by polyene antibiotics. Cell. Mol. Biol. Lett. 8: 439-454.

Knopik-Skrocka A., Bielawski J., Kopczyński Z., Grodecka-Gazdecka S., Tomczak P., Gryczka R., Mazur-Roszak M., Kęsa H. 2006. The susceptibility to amphotericin B-induced hemolysis of erythrocytes from women with breast cancer before and during therapy. Comp. Clin. Pathol. 15: 181-187.

Knopik-Skrocka A., Bielawski J., Wrzeszcz K., Bochanysz A., Nowak K. 2007. Modifications of hemolytic activity of polyene antibiotics by mono- and disaccharides in mammalian erythrocytes. Biological Lett. 44: 17-30.

Knopik-Skrocka A., Buldańczyk A. 2004. The response of horse erythrocytes to polyene antibiotics. Biological Lett. 41: 27-39.

Kolakowska T., Wiles D. H., Gelder M. G., McNeilly A. S. 1976. Clinical significance of plasma chlorpromazine levels. II. Plasma levels of the drug, some of its metabolites and prolactin in patients receiving long-term phenotiazine treatment. Psychopharmacol. 49: 101-107.

Lieber M. R., Lange Y., Weinstein R. S., Steck T. 1984. Interaction of chlorpromazine with the human erythrocyte membrane. J. Biol. Chem. 259: 9225-9234.

Lieberman J. A., Philipis M., Gu H., Stroup S., Zhang P., Kong L., Ji Z., Koch G., Hamer R. M. 2003. Atypical and conventional antipsychotic drugs in treatment-naive first-episode schizophrenia: a 52-week randomized trial of clozapine vs chlorpromazine. Neuropsychopharmacol. 28: 995-1003.

Luxnat M., Galla H. J. 1986. Partition of chlorpromazine into lipid bilayer membranes: effect of membrane structure and composition. Biochim. Biophys. Acta 856: 274-282.

Mason R. P., Moisey D. M., Shajenko L. 1992. Cholesterol alters the binding of Ca2+ channel blockers to the membrane lipid bilayer. Mol. Pharmacol. 41: 315-321.

McTavish D., Sorkin D. 1989. Verapamil: an update review of its pharmacodynamic and pharma-cokinetic properties and therapeutic use in hypertension. Drugs 38: 19-76.

Meier M., Li Blatter X., Seelig A., Seelig J. 2006. Interaction of verapamil with lipid membranes and P-glycoprotein: connecting thermodynamics and membrane structure with functional activity. Biophys. J. 91: 2943-2955.

Michalak K., Wesołowska O., Motohashi N., Hendrich A. B. 2007. The role of the membrane actions of phenotiazines and flavonoids as functional modulators. Top Heterocycl. Chem. 8: 223-302.

Morimoto Y., Yutani Y., Kado Y., Iida T., Shiota M., Takeuchi Y. 1995. Protective effects of neutral amino acids against amphipathic drug-induced hemolysis. Biol. Pharmacol. Bull. 18: 1535-1538.

Musshoff F., Padosch S., Steinborn S., Madea B. 2004. Fatal blood and tissue concentrations of more than 200 drugs. Forensic Sci. Int. 142: 161-210.

Pajeva I. K., Wiese M., Cordes H. P., Seydel J. K. 1996. Membrane interactions of some catamphilic drugs and relation to their multidrug-resistance-reversing ability. J. Cancer Res. Clin. Oncol. 122: 27-40.

Perrotton T., Trompier D., Chang X., Di Pietro A., Baubichon-Cortay H. 2007. (R)- and (S)-verapamil differentially modulate the multidrug-resistant protein MRP1. J. Biol. Chem. 282:31542-31548.

Pickholz M., Oliveira jr. O. N., Skaf M. S. 2007. Interactions of chlorpromazine with phospholipid monolayer: effects of the ionization state of the drug. Biophys. Chem. 125: 425-434.

Pohl E. E., Krylov A., V., Block M., Pohl P. 1998. Changes of the membrane potential profile induced by verapamil and propranolol. Biochim. Biophys. Acta 1373: 170-178.

Pyka A., Babuśka M., Zachariasz M. 2006. A comparison of theoretical methods of calculation of partition coefficients for selected drugs. Acta Pol. Pharm. - Drug Res. 63: 159-167.

Rivera-Calimlim R., Casteneda L., Lasagna L. 1973. Effects of mode of management on plasma chlorpromazine in psychiatric patients. Clin. Pharmacol. Therapy 14: 978-986.

Salerno M., Loechariyakul P., Saengkhae C., Garnier-Suillerot A. 2004. Relation between the ability of some compounds to modulate the MRP1-mediated efflux of gluthatione and to inhibit the MRP1-mediated efflux of daunorubicin. Biochem. Pharmacol. 68: 2159-2165.

Schreier S. L., Zachowski A., Devaux P. F. 1992. Mechanisms of amphipath-induced stomatocytosis in human erythrocytes. Blood 79: 782-786.

Sheetz M. P., Singer S. J. 1974. Biological membranes as bilayer couples. A mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. USA 71: 4457-4461.

Speelmans G., Staffhorst R. W., De Wolf F. A., De Kruijff B. 1995. Verapamil competes with doxorubicin for binding to anionic phospholipids resulting in increased internal concentrations and rates of passive transport of doxorubicin. Biochim. Biophys. Acta 1238: 137-146.

Suwalsky M., Munoz M., Mennickent S., Sotomayor C. P., Bolognin S., Zatta P. 2010. Structural effects of verapamil on cell membranes and molecular models. J. Chil. Chem. Sci. 55: 1-4.

Suwalsky M., Villena F., Sotomayor C. P., Bolognin S., Zatta P. 2008. Human cells and cell membrane molecular models are affected in vitro by chlorpromazine. Biophys. Chem. 135: 7-13.

Takegami S., Kitamura K., Kitade T., Hasegawa K., Nishihira A. 1999. Effects of particle size and cholesterol content on the partition coefficients of chlorpromazine and triflupromazine between phosphatidylcholine-cholesterol bilayers of unilamellar vesicles and water studied by second-derivative spectrophotometry. J. Colloid Interf. Sci. 220: 81-87.

Wadkins R., Houghton P. 1993. The role of drug-lipid interactions in the biological activity of modulators of multi-drug resistance. Biochim. Biophys. Acta 1153: 225-236.

Wajnberg E., Tabak M., Nussenzveig P. A., Lopes CM., Louro S. R. 1988. pH-dependent phase transition of chlorpromazine micellar solutions in the physiological range. Biochim. Biophys. Acta 944: 185-190.

Watts T. J., Handy R. D. 2007. The haemolytic effect of verapamil on erythrocytes exposed to varying osmolarity. Toxicol. Vitro 21: 835-839.

Wiśniewska A., Wolnicka-Glubisz A. 2004. ESR studies on the effect of cholesterol on chlorpromazine interaction with saturated and unsaturated liposome membranes. Biophys. Chem. 111.: 43-52.

Wolnicka-Glubisz A, Lukasik M., Pawlak A., Wielgus A., Niziołek-Kierecka M., Sarna T. 2009. Peroxidation of lipids in liposomal membranes of different composition photosensitized by chlorpromazine. Photochem. Photobiol. Sci. 8: 241-247.

Zachowski A., Durand Ph. 1988. Biphasic nature of the binding of cationic amphipaths with artificial and biological membranes. Biochim. Biophys. Acta 937: 411-416.