Varying abundance and dispersal of the two-spotted spider mite (Tetranychus urticae Koch, 1836, Acari: Prostigmata: Tetranychidae) on Mi-tomato plants differing in allelic combination
PDF

Keywords

spatio-temporal spread
distribution
Solanum lycopersicum L.
spider mites
Tetranychus urticae
Mi-1.2 gene

How to Cite

Godzina, M., Kiełkiewicz, M., & Szymczykiewicz, K. (2012). Varying abundance and dispersal of the two-spotted spider mite (Tetranychus urticae Koch, 1836, Acari: Prostigmata: Tetranychidae) on Mi-tomato plants differing in allelic combination. Biological Letters, 48(2), 213–223. https://doi.org/10.2478/v10120-011-0022-8

Number of views: 64


Number of downloads: 13

Abstract

It is well known that the presence of the Mi-1.2 gene determines the resistance of tomato plants (Solanum lycopersicum L.) to 3 root-knot nematode species and some insect herbivores of the order Hemiptera. In this study, the density and dispersal of two-spotted spider mites (Tetranychus urticae) on tomato plants of 4 cultivars were evaluated under greenhouse conditions, to find out whether tomatoes differing in allelic combination of the Mi-1.2 gene exhibit similar or different resistance to the mite pest. The results show, for the first time, that the same initial number of mites develops into populations that vary in abundance and distribution depending on tomato allelic composition of the Mi-1.2 gene. The results indicate that the mite-pest develops more slowly on tomato plants of cultivar ‘Motelle’, carrying 2 dominant alleles for the Mi-1.2 gene, than on heterozygous ‘Altess F1’ tomatoes and both cultivars carrying only recessive alleles of this gene: ‘Moneymaker’ and ‘Plaisence F1’. This suggests that the Mi-1.2 gene may be involved in tomato resistance against spider mites when this dominant gene is expressed homozygously, but this needs to be verified by further research.

https://doi.org/10.2478/v10120-011-0022-8
PDF

References

Casteel C. L., Walling L. L., Paine T. D. 2006. Behavior and biology of the tomato psyllid, Bactericera cockerelli, in response to the Mi-1.2 gene. Entomol. Exp. Apel. 121: 67-72.

Godzina M., Kiełkiewicz M., Szymczykiewicz K. 2010a. Tomato carrying Mi-1.2 gene as a host-plant to the two-spotted spider mite (Tetranychus urticae Koch): results of laboratory evaluation. Vegetable Crops Research Bulletin 72: 15-24.

Godzina M., Staniaszek M., Kiełkiewicz M. 2010b. Relevance of the MI23 marker and the potato aphid biology as indicators of tomato plant (Solanum lycopersicum L.) resistance to some pests. Vegetable Crops Research Bulletin 72: 25-33.

Goggin F. L., Gowri S., Williamson V. M., Ullman D. E. 2004. Developmental regulation of Mi-mediated aphid resistance is independent of Mi-1.2 transcript levels. Mol. Plant-Microbe Interact. 17: 532-536.

Goggin F. L., Williamson V. M., Ullman D. E. 2001. Variability in the response Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae) to the tomato resistance gene Mi. Environ. Entomol. 30: 101-106.

Kaloshian I., Kinsey M. G., Williamson V. M., Ullman D. E. 2000. Mi-mediated resistance against the potato aphid Macrosiphum euphorbiae (Hemiptera: Aphididae) limits sieve element ingestion. Environ. Entomol. 29: 690-695.

Kaloshian I., Lange W. H., Williamson V. M. 1995. An aphid resistance locus is tightly linked to the nematode resistance gene, Mi, in tomato. Proc. Natl. Acad. Sci. USA 92: 622-625.

Kang J. H., Shi F., Jones A. D., Marks M. D., Howe G. A. 2010. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. J. Exp. Bot. 61: 1053-1064.

Kiełkiewicz M. 1996. Dispersal of Tetranychus cinnabarinus on various tomato cultivar. Entomol. Exp. Appl. 80: 254-257.

Kiełkiewicz M. 2003. Strategie obronne roślin pomidorów (Lycopersicon esculentum Miller) wobec przędziorka szklarniowca (Tetranychus cinnabarinus Boisduval, Acari: Tetranychidae). Wydawnictwo SGGW, Warszawa.

Kiełkiewicz M., Tomczyk A. 1987. Podatnośćodmian pomidorów i ogórków na przędziorki. Materiały XXVI Sesji Naukowej IO R. 27: 17-22.

Milligan S. B., Bodeau J., Yaghoobi J., Kaloshian I., Zabel P., Williamson V. M. 1998. The root - knot nematode resistance gene Mi from tomato is a member of leucine zipper, nucleotide binding, leucine - rich repeat family of plant genes. Plant Cell. 10: 1307-1319

Nombela G., Williamson V. M., Muniz M. 2003. The root - knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol. Plant-Microbe Interact. 16: 645-649.

Nihoul P., VanImpe G., Hance T. 1991. Characterizing indices of damage to tomato by the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) to achieve biological control. J. Hort. Sci. 66: 643-648.

Pallipparambil G. R., Reese J. C., Avila C. A., Louis J. M., Goggin F. L. 2010. Mi-mediated aphid resistance in tomato: tissue localization and impact on the feeding behavior of two potato aphid clones with differing levels of virulence. Entomol. Exp. Appl. 135: 295-307.

Rossi M., Goggin F. L., Milligan S. B., Kaloshian I., Ullman D. E., Williamson V. M. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci. USA 95: 9750-9754.

Simmons A. T., Gurr G. M. 2005. Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric. For. Entomol. 7: 265-276.

Smith C. M. 2005. Plant resistance to arthropods. Molecular and Conventional Approaches. Springer, Dordrecht, The Netherlands.

Smith P. G. 1944. Embryo culture of a tomato species hybrid. Proc. Am. Soc. Hortic. Sci. 44: 413-416.

Talavera M., Verdejo-Lucas S., Ornat C., Torres J., Vela M. D., Macias F. J., Cortada L., Arias D. J., Valero J., Sorribas F. J. 2009. Crop rotations with Mi gene resistant and susceptible tomato cultivars for management of root-knot nematodes in plastic houses. Crop Prot. 28: 662-667.