Abstract
Plant invasions are a serious global threat to biodiversity and ecosystem stability. The invasive giant knotweed Fallopia sachalinensis (synonym: Reynoutria sachalinensis) is one of the most aggressive plant invaders in many countries. It forms dense stands that prevent other species from growing. To assess the impact of the knotweed, oribatid mite communities were studied under Fallopia-free native vegetation and at Fallopia-infested sites (2 types: 90-100% and 30% of coverage) with similar soil. All the sites are located in mixed forest in the Kraków-Częstochowa Upland (Jura Krakowsko-Częstochowska) in south Poland. Species composition and functional group composition of oribatid mite communities were compared. In total, 1540 specimens belonging to 70 oribatid species were collected from 90 soil samples. This successful exotic invasive species had a moderate influence on species richness (20% less species at the totally invaded site than at the Fallopia-free site) and a profound effect on soil oribatid mite community composition. Several oribatid species characteristic of a particular site were observed. Shifts were detected in proportions of groups with different habitat specificity (e.g. higher proportion of eurytopic mites at invaded sites), ecomorphological groups (e.g. lower proportion of litter-dwelling mites at invaded sites), trophic groups (e.g. lower proportion of macrophytophagous mites at invaded sites) and zoogeographical groups (e.g. higher proportion of mites with broad geographical distribution at invaded sites). These observations prove the radical negative change of environmental conditions for soil oribatid mites as a result of Fallopia invasion. The increase in sexually reproducing oribatid mites at invaded sites suggests that this way of reproduction is preferable when resources are in shortage.
References
Ashton I. W., Hyatt L. A., Howe K. M., Gurevitch J., Lerdau M. T. 2005. Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol. Appl. 15: 1263-1272.
Bardgett R. D., Wardle D. A., Yeates G. W. 1998. Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol. Biochem. 30: 1867-1878.
Beerling D. J., Dawah H. A. 1993. Abundance and diversity of invertebrates associated with Fallopiajaponica (Houtt. Ronse Decraene) and Impatiens glandulifera (Royle): two alien plant species in the British Isles. The Entomologist 112: 127-139.
Belnap J., Phillips S. L. 2001. Soil biota in an ungrazed grassland: response to annual grass (Bromustectorum) invasion. Ecol. Appl. 11: 1261-1275.
Borcard D. 1994. Les Oribates des tourbiéres du Jura suisse (Acari, Oribatei). Faunistique VI. Oppioidea (Thyrisomidae), Hydrozetoidea, Cymbaeremoidea, Oribatuloidea (part.). Bull. Soc. entomol. suisse 67: 363-372.
Cianciolo J. M., Norton R. A. 2006. The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Exp. Appl. Acarol. 40: 1-25.
Dassonville N., Domke n S., Herpigny B., Poly F., Mee rts P. 2010. Impact of Fallopia spp. on ecosystem functioning: Nitrogen and organic matter cycling and implicated soil biota. In: Science Facing Aliens. Proceedings of a scientific meeting on Invasive Alien Species, Brussels (Segers H., Branquart E., Eds), May 11th 2009, pp. 19-24, Belgian Biodiversity Platform.
Ehrenfeld J. G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6: 503-523.
Gerbe r E., Kreb s C., Murrell C., Moretti M., Rocklin R., Schaffner U. 2008. Exotic knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biol. Cons. 141: 646-654.
Hartley M. K., DeWalt S., Rogers W. E., Siem ann E. 2004. Characterization of arthropod assemblage supported by the Chinese Tallow tree (Sapium sebiferum). Tex. J. Sci. 56: 369-82.
Kappes H., Lay R., Topp W. 2007. Changes in different trophic levels of litter-dwelling macrofauna associated with giant knotweed invasion. Ecosystems 2: 734-744. doi:10.1007/s10021-007-9052-9.
Koutika L-S., Rainey H. J. Dassonville N. 2011. Impacts of Solidago gigantea, Prunus serotina, Heracleum mantegazzianum and Fallopia japonica invasions on ecosystems. Appl. Ecol. Environ. Res. 91: 73-83.
Koutika L.-S., Vanderhoeven S., Chapuis-Lardy L., Dassonville N., Mee rts P. 2007. Assessment of changes in soil organic matter following invasion by exotic plant species. Biol. Fert. Soils 44: 331-341.
Krivolutsky D. A. 1995. Oribatid mites. Morphology, development, phylogeny, ecology, methods of study, model species Nothrus palustris C.L. Koch, 1839. Moscow, Nauka Publishers (in Russian).
Luxton M. 1972. Studies on the oribatid mites of a Danish beech wood soil. I. Nutritional biology. Pedobiologia 12: 434-463.
Nicolini F., Topp W. 2005. Soil properties in plantations of sessile oak (Quercus petraea) and red oak (Quercus rubra) in reclaimed lignite open-cast mines of the Rhineland. Geoderma 129: 65-72.
Norton R. A., Kethley J. B., Johnston D. E., O’Connor B. M. 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Evolution and diversity of sex ratio in insects and mites (Wrensch D., Ebbe rt M., Eds), pp. 8-99, Chapman and Hall, USA.
Porazinska D., Bardgett R. D., Blaauw M. B., Hunt H. W., Parsons A. N., Seastedt T. R., Wall D. H. 2003. Relationships at the aboveground-belowground interface: Plants, soil biota, and soil processes. Ecol. Monogr. 73: 377-395.
Priteke l C., Whittem ore-Olson A., Snow N., Moore J. C. 2006. Impacts from invasive plant species and their control on the plant community and belowground ecosystem at Rocky Mountain National Park, USA. Appl. Soil Ecol. 32: 132-141.
Schaefer I., Dome s K., Hee thoff M., Schneider K., Schön I., Scheu S., Norton R. A., Maraun M. 2006. No evidence for the ‘Meselson effect’ in parthenogenetic oribatid mites. J. Evolution. Biol. 19: 184-193.
Schatz H. 1983. Catalogus Fauna Austriae, Teil IXi U. - Ordn.: Oribatei, Hornmilben. Vienna: Ősterreichischen, Akademie der Wissenschaften (in German).
Scheu S., Drossel B. 2007. Sexual reproduction prevails in a world of structured resources in short supply. Proc. R. Soc. B. 274: 1225-1231. doi: 10.1098/rspb.2007.0040.
Schneider K., Scheu S., Maraun M. 2007. Microarthropod density and diversity respond little to spatial isolation. Basic Appl. Ecol. 8: 26-35.
Skubała P. 2004. Colonization and development of oribatid mite communities (Acari: Oribatida) on post-industrial dumps. Wyd. Uniwersytetu Śląskiego, Katowice Skubała P., Mierny A. 2009. Invasive Reynoutria taxa as a contaminant of soil. Does it reduce abundance and diversity of microarthropods and damage soil habitat? Pestycydy/Pesticides 1-4: 57-62.
St. John M. G., Wall D. H., Hunt H. W. 2006. Are soil mite assemblages structured by the identity of native and invasive alien grasses? Ecology 87: 1314-1324.
Subias L. S. 2004. Listado sistemático, sinonímico y biogeográfico de los Ácaros Oribátidos (Acariformes, Oribatida) del mundo (1758-2002). Graellsia 60 (in Spanish with English summary). Updated in February 2011.http://www.ucm.es/info/zoo/Artropodos/Catalogo.pdf; Accessed 30/05/11 Topp W., Kappes H., Rogers F. 2008. Response of ground-dwelling beetle (Coleoptera) assemblages to giant knotweed (Reynoutria spp.) invasion. Biol. Invasions 10: 381-390.
Wardle D. A., Bonner K. I., Barke r G. M., Yeates G. W., Nicholson K. S., Bardgett R. D., Watson R. N., Ghani A. 1999. Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol. Monogr. 69: 535-568.
Wardle D. A., Nicholson K. S., Rahman A. 1995. Ecological effects of the invasive weed species Senecio jacobaea L. (ragwort) in a New Zealand pasture. Agric. Ecosyst. Environ. 56: 19-28.
Weigmann G. 2006. Hornmilben (Oribatida). Die Tierwelt Deutschlands, 76. Teil. Goecke & Evers, Keltern (in German).
License
Ten utwór jest dostępny na licencji Creative Commons Uznanie autorstwa - Bez utworów zależnych 4.0 Międzynarodowe.