Ex situ cultivation of the endangered savin junipers (Juniperus sabina L.) from the Western Carpathians
Journal cover Biodiversity: Research and Conservation, volume 75, year 2024
PDF

Keywords

conservation genetics
full-sibling
microsatellite
relict population
Juniperus sabina L. var. sabina

How to Cite

Jadwiszczak, K., Parzonko, S., Mazur, M., Marcysiak, K., Boratyński, A., & Bona, A. (2024). Ex situ cultivation of the endangered savin junipers (Juniperus sabina L.) from the Western Carpathians. Biodiversity: Research and Conservation, 75, 27–34. https://doi.org/10.14746/biorc.2024.75.3

Number of views: 41


Number of downloads: 23

Abstract

Ex situ conservation methods provide immediate insurance against extinction of relict trees and shrubs in the wild. To be well-managed, the living collection should be well-studied in respect of the place of origin of the individuals, their taxonomic status, and genetic variation. Using 12 nuclear microsatellite loci, we analysed 22 shrubs of Juniperus sabina L. var. sabina (savin juniper), cultivated in the Kórnik Arboretum (Poland) and sourced from a Tertiary relict population in the Pieniny Mts. (Western Carpathians). We found 2 clonal pairs of individuals and a pair of full siblings. The genetic diversity parameters were rather low: NA = 2.5 alleles per locus, HO = 0.316, HE = 0.326, and the inbreeding coefficient was also very low (GIS = 0.03). The individuals formed 3 groups in the principal coordinates analysis (PCoA), but 2 of these groups were genetically close. The Bayesian clustering analysis revealed that the specimens belonged to 2 genetic groups. We recommend that the cultivation of J. sabina var. sabina should be carefully protected, as it represents remnants of the Tertiary genetic diversity of the species.

https://doi.org/10.14746/biorc.2024.75.3
PDF

Funding

This study was supported by the Polish Minister of Science and Higher Education under the program “Regional Initiative of Excellence” in 2019-2023 (grant no. 008/RID/2018/19).

References

Ashley M. V. 2010. Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Crit. Rev. Plant. Sci. 29: 148-161. DOI: https://doi.org/10.1080/07352689.2010.481167

Bona A., Kulesza U. & Jadwiszczak K.A. 2019. Clonal diversity, gene flow and seed production in endangered populations of Betula humilis Schrk. Tree Genet. Genomes 15: 50. DOI: https://doi.org/10.1007/s11295-019-1357-2

Christe C., Kozlowski G., Frey D., Fazan L., Bétrisey S., Pirintsos S., Gratzfeld J. & Naciri Y. 2014. Do livingex situ collections capture the genetic variation of wild populations? A molecular analysis of two relict tree species, Zelkova abelica and Zelkova carpinifolia. Biodivers. Conserv. 23: 2945-2959. DOI: https://doi.org/10.1007/s10531-014-0756-9

Cornuet J.-M. & Luikart G. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014. DOI: https://doi.org/10.1093/genetics/144.4.2001

Evanno G., Regnaut S., Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620. DOI: https://doi.org/10.1111/j.1365-294X.2005.02553.x

Forgiarini C., Parzefa ll F. & Reisch C. 2023. The impact of ex situ cultivation on the genetic variation of endangered plant species – implications for restoration. Biol. Conserv. 284: 110221. DOI: https://doi.org/10.1016/j.biocon.2023.110221

Frankham R. 1995. Inbreeding and extinction: a threshold effect. Conserv. Biol. 9: 792-799. DOI: https://doi.org/10.1046/j.1523-1739.1995.09040792.x

Gao J. G., Liu H., Wang N., Yang J. & Zhang X. L. 2020. Plant extinction excels plant speciation in the Anthropocene. BMC Plant Biol. 20: 430. DOI: https://doi.org/10.1186/s12870-020-02646-3

Garndner M. F. 2003. The international conifer conservation programme. Acta Hortic. 615: 405-409. DOI: https://doi.org/10.17660/ActaHortic.2003.615.45

Geng Q. F., Qing H., Ling Z. R., Jeelani N., Yang J., Yoshikawa K., Miki N. H., Wang Z. S. & Lian C. L. 2017. Characterization of polymorphic microsatellite markers for a coniferous shrub Juniperus sabina (Cupressaceae). Plant Spec. Biol. 32: 252-255. DOI: https://doi.org/10.1111/1442-1984.12152

Griffith M. P., Cartwright F., Dosmann M., Fant J., Freid E., Havens K., Jestrow B., Kramer A. T., Magellan T. M., Meerow A. W., Meyer A., Sanchez V., Santiago-Valentín E., Spence E., Sustasche-Sustache J. A., Francisco-Ortega J. & Hoban S. 2021. Ex situ conservation of large and small plant populations illustrates limitations of common conservation metrics. Int. J. Plant Sci. 182: 263-276. DOI: https://doi.org/10.1086/713446

Işik K. 2011. Rare and endemic species: why are they prone to extinction? Turk. J. Bot. 35: Article 11. DOI: https://doi.org/10.3906/bot-1012-90

Jadwiszczak K. A., Kłosowski S., Zalewska I., Banaszek A. & Chrzanowska A. 2017. Genetic diversity and sexual reproduction in relict populations of Betula nana. Silva Fenn. 51: 1-18. DOI: https://doi.org/10.14214/sf.5643

Jadwiszczak K. A., Mazur M., Bona A., Marcysiak K. & Boratyński A. 2023. Three systems of molecular markers reveal genetic differences between varieties sabina and balkanensis in the Juniperus sabina L. range. Ann. Forest Sci. 80: 45. DOI: https://doi.org/10.1186/s13595-023-01211-w

Jaguś A. 2015. Charakterystyka regionalna Pienin na potrzeby terenowej edukacji przyrodniczej. Inżynieria Ekologiczna 41: 46-60. DOI: https://doi.org/10.12912/23920629/1828

Jones O. R & Wang J. 2010. COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10: 551-555. DOI: https://doi.org/10.1111/j.1755-0998.2009.02787.x

Kalinowski S. T. & Taper M. L. 2006. Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv. Genet. 7: 991-995. DOI: https://doi.org/10.1007/s10592-006-9134-9

Kamvar Z. N., Brooks J. C. & Grünwald N. J. 2015. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6: 208. DOI: https://doi.org/10.3389/fgene.2015.00208

Kopelman N. M., Mayzel J., Jakobsson M., Rosenberg N. A. & Mayrose I. 2015. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15: 1179-1191. DOI: https://doi.org/10.1111/1755-0998.12387

Kosiński P. & Wojnicka-Półtorak A. 2010. Wstępne badania nad zróżnicowaniem allozymowym Juniperus sabina L. (Cupressaceae) na reliktowym stanowisku w Pieninach Centralnych. Pieniny – Przyroda i Człowiek 11: 39-44.

Kozlowski G., Gibbs D., Fun H., Frey D. & Gratzfeld J. 2012. Conservation of threatened relict trees through living ex situ collections: lessons from the global survey of the genus Zelkova (Ulmaceae). Biodivers.Conserv. 21: 671-685. DOI: https://doi.org/10.1007/s10531-011-0207-9

Kunštárová V., Kĺč V. & Wróbel S. 2007. Borievka netatová (Juniperus sabina L.) v Pieninách. Bulletin Slovenskej botanickej spoločnosti 29: 79-82. Bratislava.

Li D-Z . & Pritchard H. W. 2009. The science and economics of ex situ plant conservation. Trends Plant Sci. 14: 614-621. DOI: https://doi.org/10.1016/j.tplants.2009.09.005

Lu D., Huang H., Wang A. & Zhang G. 2022. Genetic evaluation of Juniperus sabina L. (Cupressaceae) in arid and semi-arid regions of China based on SSR markers. Forests 13: 231. DOI: https://doi.org/10.3390/f13020231

Marshall D. R. & Brown A. H. D. 1975. Optimum sampling strategies in genetic Conservation. In: O. H. Frankel & J. G. Hawkes (eds.). Crop Genetic Resources for Today and Tomorrow, pp. 53-80. Cambridge University Press, Cambridge.

Mazur M., Boratyński A., Boratyńska K. & Marcysiak K. 2021. Weak geographical structure of Juniperus sabina (Cupressaceae) morphology despite its discontinuous range and genetic differentiation. Diversity 13: 470. DOI: https://doi.org/10.3390/d13100470

Meirmans P. G. 2020. GENODIVE version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20: 1126-1131. DOI: https://doi.org/10.1111/1755-0998.13145

Peaka ll R. & Smouse P. E. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295. DOI: https://doi.org/10.1111/j.1471-8286.2005.01155.x

Piry S., Luikart G. & Cornuet J. M. 1999. BOTTLENECK; a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90: 502-503. DOI: https://doi.org/10.1093/jhered/90.4.502

Pritchard J. K., Stephens M. & Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959. DOI: https://doi.org/10.1093/genetics/155.2.945

Raymond M. & Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249. DOI: https://doi.org/10.1093/oxfordjournals.jhered.a111573

Rice W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223-225. DOI: https://doi.org/10.1111/j.1558-5646.1989.tb04220.x

Rousset F. 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8: 103-106. DOI: https://doi.org/10.1111/j.1471-8286.2007.01931.x

Sharrock S. 2012. The global strategy for plant conservation. https://www.bgci.org/wp/wp-content/uploads/2019/04/GSPC_flyer.pdf (accessed on 15.01.2024)

Smólski S. 1937. Jałowiec sawina (Juniperus sabina L.) w Pieninach. Ochrona Przyrody 17: 216-221.

Smólski S. 1960. Pieniński Park Narodowy. Polska Akademia Nauk, Zakład Ochrony Przyrody, Kraków, pp. 273.

Tylkowski T. 2010. Dormancy breaking in savin juniper (Juniperus sabina L.) seeds. Acta Soc. Bot. Pol. 79:27-29. DOI: https://doi.org/10.5586/asbp.2010.004

van Oosterhout C., Hutchinson W. F., Wills P. M. & Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. DOI: https://doi.org/10.1111/j.1471-8286.2004.00684.x

Wesche K., Ronnenberg K. & Hensen I. 2005. Lack of sexual reproduction within mountain steppe populations of the clonal shrub Juniperus sabina L. in semi-arid southern Mongolia. J. Arid Environ. 63: 390-405. DOI: https://doi.org/10.1016/j.jaridenv.2005.03.014

Westwood M., Cavender N., Meyer A. & Smith P. 2021. Botanic garden solutions to the plant extinction crisis. Plants People Planet 3: 22-32. DOI: https://doi.org/10.1002/ppp3.10134

Wróbel I. & Wróbel S. 2008. Jałowiec sabiński, Juniperus sabina L. In: Z. Mirek & H. Piękoś-Mirkowa (eds.). Czerwona Księga Karpat Polskich. Rośliny Naczyniowe (Red Book of the Polish Carpathians. Vascular Plants), pp. 57-59. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

Wróbel I., Wróbel S. & Zarzycki K. 2014. Juniperus sabina L. Jałowiec sawina. In: R. Kaźmierczakowa, K. Zarzycki & Z. Mirek (eds.). Polska Czerwona Księga Roślin (Polish Plant Red Book), pp. 78-80. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

Zając M. & Zając A. 2009. Elementy geograficzne rodzimej flory Polski. 94 pp. Institute of Botany, Jagiellonian University, Kraków.

Zarzycki K. 1976. Małe populacje pienińskich roślin reliktowych i endemicznych, ich zagrożenie i problemy ochrony. Ochrona Przyrody 41: 7-76.

Zarzycki K. 1981. Rośliny naczyniowe Pienin: rozmieszczenie i warunki występowania. 257 pp. PWN, Warszawa.