Spring phytoplankton and periphyton composition: case study from a thermally abnormal lakes in Western Poland
PDF

Keywords

heated lakes
phytoplankton
periphyton
cooling system of water
Vallisneria spiralis

How to Cite

Burchardt, L., Hindák, F., Komárek, J., Lange-Bertalot, H., Messyasz, B., Pikosz, M., … Gąbka, M. (2015). Spring phytoplankton and periphyton composition: case study from a thermally abnormal lakes in Western Poland. Biodiversity: Research and Conservation, 36, 17–24. https://doi.org/10.2478/biorc-2014-0010

Number of views: 16


Number of downloads: 11

Abstract

Getting to know the response of different groups of aquatic organisms tested in altered thermal environments to environmental conditions makes it possible to understand processes of adaptation and limitation factors such as temperature and light. Field sites were located in three thermally abnormal lakes (cooling system of power plants), in eastern part of Wielkopolska region (western Poland): Pątnowskie, Wąsosko-Mikorzyńskie and Licheńskie. Water temperatures of these lakes do not fall below 10°C throughout the year, and the surface water temperature in spring is about 20˚C. In this study, we investigated the species structure of the spring phytoplankton community in a temperature gradient and analyzed diversity of periphyton collected from alien species (Vallisneria spiralis) and stones. 94 taxa belonging to 56 genera of algae (including phytoplankton and periphyton) were determined. The highest number of algae species were observed among Chlorophyta (49), Bacillariophyceae (34) and Cyanobacteria (6). In spite of important differences in temperature in the investigated lakes, taxonomic composition of phytoplankton was comparable. Thermophilic species: Glochidinium penardiforme and Cylindrospermopsis raciborskii were found in the species structure (blooms were not observed). The obtained data also showed that the biotic surface of Vallisneria spiralis was a better substrate for Bacillariophyceae colonization than stones. The examination in the spring season of these thermally altered lakes, indicated the taxonomic composition of phytoplankton typical for eutrophic reservoirs (not heated). There was no replacement of any phytoplankton groups which are characteristic for spring conditions, even if there were changes in the competition dynamics.

https://doi.org/10.2478/biorc-2014-0010
PDF

References

Bogacka-K apusta E. & Kapusta A. 2013. Spatial and diurnal distribution of Cladocera in beds of invasive Vallisneria spiralis and open water in heated lake. Acta Zool. Bulg. 65(2): 225-231.

Briand J. F., Leboulanger C., Humbert J. F., Bernard C. & Dufour P. 2004. Cylindrospermopsis raciborskii (Cyanobacteria) invasion at midlatitudes: selection, wide physiological tolerance, or global warming? J. Phycol. 40:231-238.

Burchardt L. 1977. Changes in the phytoplankton composition of Lake Pątnowskie - a receiving basin for heated waters and sugar processing wastewater. Wyd. Nauk. UAM, seria Biologia, 8, 117 pp. Poznań.

Burchardt L. & Messyasz B. 2002. Structural variation of the phytoplankton community in Lake Kociołek (Wielkopolski National Park). Ecological Questions 2: 95-102.

Dąmbska I. 1976. Badania hydrobotaniczne jezior podgrzanych w okolicy Konina. Wyd. Nauk. UAM, seria Biologia, 6, 118 pp. Poznań.

Gąbka M. 2002. Vallisneria spiralis (Hydrocharitaceae) - Nowy gatunek we florze Polski. Fragm. Flor. Geobot. Polonica 9: 67-73.

Gąbka M. & Owsianny P.M. 2009. First records of the Hygrophila polysperma (Roxb.) T. Anderson (Acanthaceae) in Poland. Botanika - Steciana 13: 9-14.

Guiry M. D. & Guiry G. M. 2014. Algaebase. World-wide Electronic publication. National University of Ireland: Galway, Ireland.

Hegewald E. 2000. New combinations in the genus Desmodesmus (Chlorophyceae, Scenedesmaceae). Algological Studies 96: 1-18.

Hillbricht-I lkowska A. & Zdanowski B. 1978. Effect of thermal effluents and retention time on lake functioning and ecological efficiencies in plankton communities. Internationale Revue der Gesamten Hydrobiologie 63(5): 609-618.

Hillbricht-I lkowska A. & Zdanowski B. 1988. Main changes in the Konin lake system (Poland) under the effect of heated-water discharge pollution and fishery. Ekol. pol. 36: 23-45.

Hindák F. 1984. Studies on the Chlorococcal Algae (Chlorophyceae) III; VEDA Publishing House of the Slovak Academy of Sciences, Bratislava: 2-308.

Hindák F. 1988. Studies on the Chlorococcal Algae (Chlorophyceae) IV; VEDA Publishing House of the Slovak Academy of Sciences, Bratislava: 2-263.

Hindák F. 1996. Key to the unbranched filamentous green algae (Ulotrichineae, Ulotrichales, Chlorophyceae). Bulletin Slovenskey Botanickej Spolocnosti pri SAV, Bratislava, Suplement 1: 2-77.

Hutorowicz A. & Hutorowicz J. 2008. Seasonal development of Vallisneria spiralisL. in a heated lake. Ecological Questions 9: 79-86.

Kapusta A. 2004. Relationship between the abundance of larvae and juvenile stage assemblages and the occurrence of macrophytes in the shallow littoral of Lake Licheńśkie. Arch. Pol. Fish. 12(2): 163-176.

Kokociński M., Dziga D., Spoof L., Stefaniak K., Jurczak T., Mankiewicz-Boczek J. & Meriluoto J. 2009. First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland. Chemosphere 74: 669-675.

Komárek J. & Anagnastidis K. 1999. Cyanoprokaryota. 1. Teil: Chroococcales. Süsswasserflora von Mitteleuropa; T. 19/1, VEB Gustav Fischer, Verlag. Heidelberg, Berlin: 2-548.

Komárek J. & Anagnastidis K. 2005. Cyanoprokaryota. 2. Teil: Oscillatoriales. Süsswasserflora von Mitteleuropa; T. 19/2, VEB Gustav Fischer, Verlag. Heidelberg, Berlin: 2-759.

Krammer K., Lange-Bertalot H. 1991. Bacillarioophyceae. Süsswasserflora von Mitteleuropa; T 2/4, Gustav Fischer, Verlag. Jena: 2-437.

Lange-Bertalot H. 1993. 85 new taxa and much more than 100 taxonomic clarifications supplementary to Süsswasserflora von Mitteleuropa. VEB Gustav Fischer, Verlag. Berlin, Stuttgard, Bibl. Diatom 2, 1-4: 2-759.

Lange-Bertalot H. 2001. Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia. W: H. Lange-Bertalot (ed.): Diatoms of Europe. Diatoms of the European inland waters and comparable habitats. A. R. G. Gantner Verlag K.G., 2: 2-526.

Messyasz B. 2006. Chlorophyta - plants connected with diverse water reservoirs in Wielkopolska region (Western Poland). Biodiv. Res. Conserv. 3-4: 352-356.

Messyasz B. 2009. Enteromorpha (Chlorophyta) populations in River Nielba and Lake Laskownickie. Hydrobiol. Oceanolog. Stud. 38(2): 55-63.

Messyasz B. & Kuczyńska-Kipp en N. 2006. Periphytic algal communities: a comparison of Typha angustifolia L. and Chara tomentosa L. beds in three shallow lakes (West Poland). Pol. J. Ecol. 54(1): 15-27.

Messyasz B. & Neumann M. 2011. Jesienne zbiorowiska fitoplanktonu Jeziora Wąsosko-Mikorzyńskiego i Jeziora Ślesińskiego. In: K. Latowski (ed.). Problemy biologiczne współczesnego świata, pp. 91-95. Wydawnictwo Kontekst, Poznań.

Messyasz B., Pikosz M., Rybak A. & Łepkowska K. 2012. Epiphytic diatom community and calcium carbonate crystals characteristics on the surface of freshwater Ulva thalli. Teka Kom. Ochr. Kszt. Środ. Przyr.-OL PAN. 9: 96-106.

Morin A. & Cattaneo A. 1992. Factors affecting sampling variability of freshwater periphyton and the power of periphyton studies. Can. J. Fish. Aquat. Sci. 49: 1695-1703.

Najberek K. & Solarz W. 2011. Jeziora Konińskie jako ognisko inwazji gatunków obcych w Polsce. In: Z. Głowaciński, H. Okarma, J. Pawłowski & W. Solarz (eds.). Gatunki obce w faunie Polski II: 614-623.

Napiórkowska-K rzebietke A. 2009. Diversity and dynamics of phytoplankton in lakes Licheńskie and Ślesińskie in 2004-2005. Arch. Pol. Fisch. 17: 253-265.

Ondok J. P. 1978. Radiation climate in fish pond littoral plant communities, in: Pond littoral ecosystems - structure and functioning. In: D. Dykyjová & J. Kvet (eds.). Plant littoral ecosystems - structure and functioning. Ecological Studies 28: 113-125.

Padisák J. 1997. Cylindrospermopsis raciborskii (Wołoszyńska) Seenayya & Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol. Monogr. Stud. Suppl. 107: 563-593.

Pouličková A., Duchoslav M. & Dokulil M. 2004. Littoral diatom assemblages as bioindicators of lake trophic status: A case study from perialpine lakes in Austria. Eur. J. Phycol. 39: 143-152.

Reynolds C. S. 1984. The ecology of freshwater phytoplankton. 384 pp. Cambridge Univ. Press, London, New York, New Rochelle, Melbourn, Sydney.

Socha D. & Zdanowski B. 2001. Aquatic ecosystems in the vicinityof Konin - Biblioteka Monitoringu Środowiska, Poznań, 75 p.

Socha D. 1994a. Quantitative and qualitative changes of the phytoplankton in heated Konin lakes. Arch. Pol. Fish. 2: 219-234.

Socha D. 1994b. Changes in the phytoplankton of the heated Konin lakes (1987-1990). Idee Ekol., Ser. Zeszyty 2, pp. 88.

Socha D. & Hutorowicz A. 2009. Changes in the quantitative relations of the phytoplankton in heated lakes. Arch. Pol. Fish. 17: 239-251.

Sosnowska-Półtoracka J. 1968. Skład gatunkowy fitoplanktonu w jeziorze podgrzewanym przez elektrownię cieplną oraz w jeziorach o normalnej temperaturze, Acta Soc. Bot. Polon. 37(2): 297-325.

Stawecki K., Pyka J. P. & Zdanowski B. 2007. The thermal and oxygen relationship and water dynamics of the surface water layer in the Konin heated lakes ecosystem. Arch. Pol. Fisch. 15(4): 247-258.

Straškraba M. & Pieczyńska E. 1970. Field experiments on shading effect by emergents on littoral phytoplankton and periphyton production. Rozpr. Cesk. Acad. Ved Rada.

Szeląg-Wasielewska E. 1998. Pico, nano and microphytoplankton in pelagial of small artificial reservoirs in spring. International Review of Hydrobiology 83: 509-514.