Topographic attributes and ecological indicator values in assessing the ground-floor vegetation patterns
PDF

Keywords

digital elevation models
forest vegetation
geographical information systems
multivariate ordination analysis
riparian vegetation
spatial patterns
solar radiation
topographic wetness index

How to Cite

Czarnecka, B., Rysiak, A., & Chabudziński, Łukasz. (2017). Topographic attributes and ecological indicator values in assessing the ground-floor vegetation patterns. Biodiversity: Research and Conservation, 47, 9–22. https://doi.org/10.1515/biorc-2017-0010

Number of views: 13


Number of downloads: 8

Abstract

The GIS and DEM became useful tools for the detection of patterns of species with different habitat requirements. The species number correlated positively with the total and flat area of a section and the TWI, while the denivelation, mean slope and upslope area had a reverse vector. Among the most frequent and abundant herb species, we found several spatial patterns of distribution, namely those of: Maianthemum bifolium, Carex remota, C. acutiformis, Filipendula ulmaria, Dryopteris filixmas, and Urtica dioica. The rarest species represented Ajuga genevensis, Scorzonera humilis, and Stachys palustris patterns.

https://doi.org/10.1515/biorc-2017-0010
PDF

References

Angiolini C., Nucci A., Frigniani F. & Landi M. 2011. Using multivariate analyses to assess effects of fluvial type on plant species distribution in a Mediterranean river. Wetlands 31: 167-177. http://dx.doi/org/10.1007/s13157-010-0118-7

Balkovič J., Kollár J. & Šimonovič V. 2012. Experience with using Ellenberg’s R indicator values in Slovakia: oli-gotrophic and mesotrophic submontane broad-leaved forests. Biologia, sec. Botany 67: 474-482. http://dx.doi.org/10.2478/s11756-012-0027-8

Bergès L., Gègout J.-C. & Franc A. 2006. Can understory vegetation accurately predict site index? A comparative study using floristic and abiotic indices in sessile oak (Quercus petraea Liebl.) stands in northern France. Ann. For. Sci. 63: 31-42. http://dx.doi.org/10.1051/forest:2005091

Beven K. & Kirkby N. 1979. A physically based variable contributing area model of basin hydrology. Hydro. Sci. Bull. 24: 43-69.

Burrough P. A. & McDonell R.A. 1998. Principles of Geographical Information Systems. 352 pp. Oxford University Press, New York.

Crosti R., de Nicola C., Fanelli G. & Testi A. 2010. Ecological classification of beech woodlands in the Central Apennine through frequency distribution of Ellenberg indicators. Ann. Bot. n.s., 0: 97-104. Available: http://ojs.uniroma1.it/index.php/Annalidibotanica/article/view/9112/9052.pdf [01.06.2017].

Cousins S. A. O. & Lindborg R. 2004. Assessing changes in plant distribution patterns – indicator species versus plant functional types. Ecol. Ind. 4: 17-27. http://dx.doi.org/10.1016/j.ecolind.2003.11.002

Czarnecka B. & Chabudziński Ł. 2011. Vegetation landscapes of a small-scale river valley in the light of the GIS analysis. Probl. Landscape Ecol. 20: 293-299.

Czarnecka B. & Chabudziński Ł. 2014. Assessment of flora diversity in a minor river valley using ecological indicator values, Geographical Information Systems and Digital Elevation Models. Cent. Eur. J. Biol. 9: 220-231. http://dx.doi/org/10.2478/s11535-013-0263-0

Czarnecka B. & Janiec B. 2001. Factors affecting the distribution and properties of forest soils in river breaks of Roztocze. Acta Agrophys. 50: 81-93.

Czarnecka B. & Janiec B. 2002. Przełomy rzeczne Roztocza jako modelowe obiekty w edukacji ekologicznej. 232 pp.+photos. Wyd. UMCS, Lublin.

Czarnecka B. & Janiec B. 2006. Krajobrazy roślinne jako wyraz naturalnych i antropogenicznych przemian środowiska małych dolin rzecznych Roztocza. Probl. Ecol. Krajobr. 16: 171-184

Czarnecka B., Moszyńska U. & Fita K. 2001. Zbiorowiska leśne doliny Sopotu w granicach rezerwatu Czartowe Pole: stan aktualny i tendencje dynamiczne. Parki Nar. Rez. Przyr. 20: 63-87.

Czarnecka B., Rysiak A. & Chabudziński Ł. 2015. How a river course influences the species richness and ecological requirements on two opposite riverbanks in a forest area. Acta Soc. Bot. Pol. 84: 13-22. http://dx.doi.org/10.5586/asbp.2014.032

Diekmann M. 2003. Species indicator values as an important tool in applied plant ecology – a review. Basic Appl. Ecol. 4: 493-506. http://dx.doi.org/10.1078/1439-1791-00185

Dorner B., Lertzman K. & Fall J. 2002. Landscape pattern in topographically complex landscapes: issues and techniques for analysis. Landscape Ecol. 17: 729-743. http://dx.doi.org/10.1023/A:1022944019665

Ellenberg H. 1974. Zeigerwerte der Gefäßpfanzen Mittel-europas. Scr. Geobot. 9: 9-160.

Ellenberg H., Weber H. E., Dül R., Wirth V., Werner W. & Paulissen D. 1992. Zeigerwerte von Pflanzen Mitteleuropas. Scr. Geobot. 18: 1-248.

Ertsen A. C. D., Alkemade J. R. M. & Wassen M. J. 1998. Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in the Netherlands. Plant Ecol. 135: 113-124.

ESRI 2003. Arc View spatial analyst. Advanced spatial analysis using raster and vector data. Environmental System Research Institute, Redlands.

Evans J. S., Oakleaf J., Cushman S. A. & Theobald D. 2014. An ArcGIS toolbox for surface gradient and geomorphometric modeling. Version 2.0-0. Available: http://evansmurphy.wix.com/evansspatial.pdf. [02.12.2015].

Fijałkowski D. 1973. Zespoły trawiasto-turzycowe rezerwatu krajobrazowego Czartowe Pole. Ann. UMCS, s. C, 28: 145-164.

Feldmeyer-Christe E., Ecker K., Küchler M., Graf U. & Waser L. 2007. Improving predictive mapping in Swiss mire ecosystems through re-calibration of indicator values. Appl. Veg. Sci. 10: 183-192. http://dx.doi.org/10.1111/j.1654-109X.2007.tb00516.x

Fitterer J. L., Nelson T. A., Coops N. C. & Wulder M. A. 2012. Modelling the ecosystem indicators of British Columbia using Earth observation data and terrain indices. Ecol. Indicat. 20: 151-162. http://dx.doi.org/10.1016/j.ecolind.2012.02.024

Francis R. A., Tibaldeschi P. & McDougall L. 2008. Fluvially-deposited large wood and riparian plant diversity Wetland Ecol. Manage. 16: 371-382. http://dx.doi/org/10.1007/s11273-007-9074-2

Franklin J. 1995. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress Phys. Geogr. 19: 474-499. http://dx.doi.org/10.1177/030913339501900403

Fu P. & Rich P. M. 2002. A geometric solar radiation model with applications in agriculture and forestry. Comp. Electr. Agricult. 37: 25-35.

Gégout J.-C., Hervé J. -Ch., Houllier F. & Pierrat J.-C. 2003. Prediction of forest soil nutrient status using vegetation. J. Veg. Sci. 14: 55-62.

Godefroid S. & Dana E. D. 2007. Can Ellenberg’s indicator values for Mediterranean plants be used outside their region of definition? J. Biogeogr. 34: 62–68.

Grabs T., Seibert J., Bishop K. & Laudon H. 2009. Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. J. Hydrol. 373: 15-23. http://dx.doi.org/10.1016/j.jhydrol.2009.03.031

Hengl T. 2006. Finding the right pixel size. Comp. Geosci. 32: 1283-1298. http://dx.doi.org/10.1016/j.cageo.2005.11.008

Hutchinson M. F. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J. Hydrol. 106: 211-232. http://dx.doi.org/10.1016/0022-1694(89)90073-5

Janiec B. & Czarnecka B. 2001. The „Czartowe Pole” landscape reserve in Roztocze (SE Poland) in the light of interdisciplinary research. Ekol. (Bratislava) 20, Suppl. 4: 222-232.

Jolley R. L., Lockaby B. G. & Cavalcanti G. G. 2010. Changes in riparian forest composition along a sedimentation rate gradient. Plant Ecol. 210: 317-330. http://dx.doi/org/10.1007/s11258-010-9759-0

Kopecký M. & Čižkova Š. 2010. Using topographic wetness index in vegetation ecology: does the algorithm matter? Appl. Veg. Sci. 13: 450-459. http://dx.doi.org/10.1111/j.1654-109X.2010.01083.x

Kraak M. J. & Ormeling F. 2003. Cartography. Visualisation of geospatial data. 205 pp. Longnam Group, UK.

Kumar L., Skidmore A. K. & Knowles E. 1997. Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 11: 475-497. http://dx.doi.org/10.1080/136588197242266

Lawesson J. E., Fosaa A. M. & Olsen E. 2003. Calibration of Ellenberg indicator values for the Faroe Islands, Appl. Veg. Sci. 6: 53-62. http://dx.doi.org/10.1111/j.1654-109X.2003.tb00564.x

Lepš J. & Šmilauer P. 2003. Multivariate analysis of ecological data using Canoco. Cambridge Univ. Press, Cambridge.

Lyon J. & Sagers C. L. 1998. Structure of herbaceous plant assemblages in a forested riparian landscape, Plant Ecol. 138: 1-16.

Matuszkiewicz J. 1977. Przegląd fitosocjologiczny zbiorowisk leśnych Polski. Cz. 4. Bory świerkowe i jodłowe. Phytocoenosis­ 6(3): 151-227.

Matuszkiewicz W. 2008. Przewodnik do oznaczania zbiorowisk­roślinnych Polski. In: J. B. Faliński (ed.). Vademecum Geobotanicum 3, 537 pp. Wyd. Nauk. PWN, Warszawa.

Mendas A. 2010. The contribution of the digital elevation models and geographic information systems in a watershed hydrologic research. Appl. Geomatics 2: 33-42. http://dx.doi.org/10.1007/s12518-010-0019-8

Mirek Z., Piękoś-Mirkowa H., Zając A. & Zając M. 2002. Flowering plants and pteridophytes of Poland. A checklist. In: Z. Mirek (ed.). Biodiversity of Poland, 1, 442 pp. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

Moelsund J. E., Arge L., Bøcher P., Dalgaard T., Odgaard M. V, Nygaard B. & Svenning J-Ch. 2013. Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region. Ecosphere 4: 1-26. http://dx.doi.org/10.1890/ES13-00134.1

Moore D. M., Lees B. G. & Davey S. M. 1991. A new method for predicting vegetation distributions using decision tree analysis in a geographic information systems. Environ. Manage. 15: 59–71. http://dx.doi.org/10.1007/BF02393838

Petřik P. & Wild J. 2006. Environmental correlates of the patterns of plant distribution at the meso-scale: a case study from Northern Bohemia (Czech Republic). Preslia 78: 211-234.

Pfeffer K., Pebesma E. J. & Burrough P. A. 2003. Mapping alpine vegetation using vegetation observations and topographic attributes. Landscape Ecol. 18: 759-776: http://dx.doi.org/10.1023/B:LAND.0000014471.78787.d0

Sarr D. A., Hibbs D. E. & Huston M. A. 2005. A hierarchical perspective of plant diversity. Quart. Rev. Biol. 80: 187-212. http://dx.doi.org/10.1086/433058

Schaffers A. P. & Sýkora K. V. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements, J. Veg. Sci. 11: 225-244. http://dx.doi.org/10.2307/3236802

Seidling W. 2005. Ground floor vegetation assessment within the intensive (Level II) monitoring of forest ecosystems in Germany: chances and challenges. Eur. J. Forest Res. 124: 301-312. http://dx.doi.org/10.1007/s10342-005-0087-1

Seidling W. & Fischer R. 2008. Deviances from expected Ellenberg indicator values fornitrogen are related to N throughfall deposition in forests. Ecol. Indic. 8: 639-646. http://dx.doi.org/10.1016/j.ecolind.2007.09.004

Sørensen R., Zinko U. & Seibert J. 2006. On the calculations of the topographic wetness index evaluation of different methods based on field observation. Hydrol. Earth Syst. Sci. 10: 101-112. http://dx.doi.org/10.5194/hess-10-101-2006

Tappeiner U., Tasser E. & Tappeiner G. 1998. Modelling vegetation patterns using natural and anthropogenic influence factors: preliminary experience with a GIS based model applied to an Alpine area. Ecol. Model. 113: 225-237. http://dx.doi.org/10.1016/S0304-3800(98)00145-8

Ter Braak C. J. F. & Šmilauer P. 2002. CANOCO reference manual and CanoDraw for Windows. User’s guide: software for canonical community ordination (version 4.5). 491 pp. Microcomputer Power, Ithaca.

Urbański J. 2012. GIS w badaniach przyrodniczych. Available: http://ocean.ug.edu.pl/~oceju/centrumGIS/dane/GIS_w_badaniach_przyrodniczych_12_2.pdf [01.06.2017].

van Dobben H. F., ter Braak C. J. F. & Dirkse G. M. 1999. Undergrowth as a biomonitor for deposition of nitrogen and acidity in pine forest. Forest Ecol. Manage. 114: 83-95. http://dx.doi.org/10.1016/S0378-1127(98)00383-1

Wamelink G. W. W., van Dobben H. F. & van der Eerden L. J. M. 1998. Experimental calibration of Ellenberg’s indicator value for nitrogen. Envir. Polution 102, S1: 371-375. http://dx.doi.org/10.1016/S0269-7491(98)80056-0

Wamelink G. W. W., Joosten V., van Dobben H. F. & Berendse F. 2002. Validity of Ellenberg indicator values judged from physico-chemical field measurements, J. Veg. Sci. 13: 269-278. http://dx.doi.org/10.1111/j.1654-1103.2002.tb02047.x

Werner K. J. & Zedler J. B. 2002. How sedge meadows, soils, microtopography, and vegetation respond to sedimentation, Wetlands 22: 451-466. http://dx.doi/org/10.1672/0277-5212(2002)022[0451:HSMSMA] 2.0.CO;2

Wilson J. P. & G allant J. C. (eds). 2000. Terrain analysis. Principles and applications. 520 pp. John Wiley & Sons, New York.

Wilson S. McG., Pyatt D. G., Malcolm D. C. & Connolly T. 2001. The use of ground vegetation and humus type as indicators of soil nutrient regime for an ecological site classification of British forests Forest. Ecol. Manage. 140: 101-116.

Zarzycki K., Trzcińska-Tacik H., Różański W., Szeląg Z., Wołek J. & Korzeniak U. 2002. Ecological indicator values of vascular plants of Poland. In: Z. Mirek (ed.). Biodiversity of Poland, 2, 183 pp. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.