Algerian Inuleae tribe species distribution modeling underinfluence of current and future climate conditions
PDF

Keywords

Inuleae
species distribution model
Algerian Tell and Sahara
Maximum entropy
RCP scenarios

How to Cite

Tahri, D., Elhouiti, F., Ouinten, M., & Yousfi, M. (2020). Algerian Inuleae tribe species distribution modeling underinfluence of current and future climate conditions. Biodiversity: Research and Conservation, 57, 23–31. https://doi.org/10.2478/biorc-2020-0002

Number of views: 26


Number of downloads: 19

Abstract

This study aims to predict the impact of bioclimatic variables in current and future climatic scenarios on the distribution of Inuleae tribe species. Modeling the distribution of 30 species of the Inuleae tribe in Algeria was carried out with a maximum entropy model. Two models with 99 occurrence points were obtained with mean values of Area Under a Curve (AUC) of 0.987±0.01 and 0.971±0.02, reflecting excellent predictive power. Three bioclimatic variables contributed mainly to the first model and four - to the second one with cumulative contributions of 83.8% and 79%, respectively elucidating differences between species of the two major climatic zones in Algeria: the Tell and the Sahara. Two-dimensional niches of Algerian Inuleae species allowed to distinguish these two groups with the distribution of 18 Tell species, characterized by high rainfall (14-18°C, 400-1000 mm) and the other 12 species – distributed in hot and dry environments (17-24°C, 20-200 mm). Modeling the distribution under future conditions showed that habitats of the Saharan region would be much less suitable for these species with a variation in the annual mean temperature increase up to 20% and a decrease in annual precipitation, which could raise to 11 and 15%.

https://doi.org/10.2478/biorc-2020-0002
PDF

References

Araújo M. B., Ferri-Yáñez F., Bozinovic F., Marquet P. A., Valladares F. & Chown S. L. 2013. Heat freezes niche evolution. Ecol Lett 16(9): 1206-1219. DOI: https://doi.org/10.1111/ele.12155

Araújo M. B., Pearson R. G., Thuiller W. & Erhard M. 2005. Validation of species – climate impact models under climate change. Glob Chang Biol 11(9): 1504-1513. doi: https://doi.org/10.1111/j.1365-2486.2005.001000.x

Babali B. & Bouazza M. 2016. Redécouverte de Pulicaria vulgaris subsp. pomeliana (Faure et Maire) E. Gamal-Eldin (Asteraceae) dans la région de Tlemcen (Algérie occidentale). Bull Soc Linn Prov 67: 45-52.

Battandier J. A. & Trabut L. C. 1888. Flore de l’Algérie. Typographie Adolphe Jourdan. Alger, 1: 425-434.

Bellard C., Bertelsmeier C., Leadley P., Thuiller W. & Courchamp F. 2012. Impacts of climate change on the future of biodiversity. Ecol Lett 15(4): 365-377. doi: 10.1111/j.1461-0248.2011.01736.x

Belloum Z., Bouheroum M., Benayache F. & Benayache S. 2013. Secondary metabolites from the aerial part of Inula crithmoides. Chem Nat Comp 49(4): 763-764. doi: https://doi.org/10.1007/s10600-013-0735-5

Belyagoubi-Benhammou N., Belyagoubi L. & Bekkara F. A. 2014. Phenolic contents and antioxidant activities in vitro of some selected Algerian plants. J Med Plant Res 8(40): 1198-1207. doi: https://doi.org/10.5897/JMPR2014.5554

Benhouhou S. S., Dargie T. C. D. & Gilbert O. L. 2003. Vegetation associations in the Ougarta Mountains and dayas of the Guir hamada, Algerian Sahara. J Arid Env 54(4): 739-753. doi: https://doi.org/10.1006/jare.2002.1070

Beniston W. S. 1984. Fleurs de l’Algérie. Enterprise Nationale du Livre. Alger. P10.

Benomari F. Z., Dib M. E. A., Muselli A., Costa J. & Djabou N. 2019. Comparative study of chemical composition of essential oils for two species of Asteriscus genus from Western Algeria. J Essent Oil Res 1-11. doi: https://doi.org/10.1080/10412905.2019.1579761

Chehma A. 2014. Biodiversite et Phytogeographie des Ecosystemes Sahariens de la Region de Taghit (Bechar). Alg J Arid Env 4(1): 39-44. doi: https://doi.org/10.12816/0008909

Chehma A. & Youcef F. 2009. Variations saisonnières des caractéristiques floristiques et de la composition chimique des parcours sahariens du Sud-Est algérien. Sécheresse 20(4): 373-381.

Despois J. & Raynal R. 1975. Géographie de l’Afrique du Nord-Ouest. Payot. Paris. P10-41.

Elhouiti F., Tahri D., Takhi D., Ouinten M., Barreau C., Verdal-Bonnin M. N., Bombarda I. & Yousfi M. 2017. Variability of composition and effects of essential oils from Rhanterium adpressum Coss. & Durieu against mycotoxinogenic Fusarium strains. Arch Microbiol 199(10): 1345-1356. DOI: https://doi.org/10.1007/s00203-017-1404-z

Elith J., Graham C. H., Anderson R. P., Dudík M., Ferrier S., Guisan A. & Li J. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2): 129-151. DOI: https://doi.org/10.1111/j.2006.0906-7590.04596.x

Elith J., Phillips S. J., Hastie T., Dudík M., Chee Y. E. & Yates C. J. 2011. A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1): 43-57. doi: https://doi.org/10.1111/j.1472-4642.2010.00725.x

Fick S. E. & Hijmans R. J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12): 4302-4315. DOI: https://doi.org/10.1002/joc.5086

Hijmans R. J., Schreuder M., De la Cruz J. & Guarino L. 1999. Using GIS to check co-ordinates of genebank accessions. Genet Resour Crop Evol 46(3): 291-296.

Khanum R., Mumtaz A. S. & Kumar S. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol 49: 23-31. doi: https://doi.org/10.1016/j.actao.2013.02.007

Nylinder S. & Anderberg A. A. 2015. Phylogeny of the Inuleae (Asteraceae) with special emphasis on the Inuleae-Plucheinae. Taxon 64(1): 110-130. DOI: https://doi.org/10.12705/641.22

Osman A. K. 2006. Contributions to the pollen morphology of the tribe Inuleae (subfamily Asteroideae-Compositae) in the flora of Egypt. Feddes Repertorium: Zeitschrift für botanische Taxomonie und Geobotanik 117(3-4): 193-206. DOI: https://doi.org/10.1002/fedr.200511096

Phillips S. J., Anderson R. P. & Schapire R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model 190(3-4): 231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026

Pramanik M., Paudel U., Mondal B., Chakraborti S. & Deb P. 2018. Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Clim Risk Manag 19: 94-105. DOI: https://doi.org/10.1016/j.crm.2017.11.002

Pulliam H. R. 2000. On the relationship between niche and distribution. Ecol Lett 3(4): 349-361. DOI: https://doi.org/10.1046/j.1461-0248.2000.00143.x

Richardson B. A., Shaw N. L. & Pendleton R. L. 2012. Plant vulnerabilities and genetic adaptation. Climate change in grasslands, shrublands, and deserts of the interior American West: a review and needs assessment. General Technical Report RMRS-GTR-285. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA, 48-59.

Rodrigues P. M. S., Silva J. O., Eisenlohr P. V. & Schaefer C. E. G. R. 2015. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests. Braz J Biol 75(3): 679-684. DOI: https://doi.org/10.1590/1519-6984.20913

Scheiter S. & Higgins S. I. 2009. Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. Glob Chang Biol 15(9): 2224-2246. DOI: https://doi.org/10.1111/j.1365-2486.2008.01838.x

Sitayeb T. & Belabbes I. 2018. Landscape Change in the Steppe of Algeria South-West Using Remote Sensing. Annals of Valahia University of Targoviste, Geographical Series 18(1): 41-52. DOI: https://doi.org/10.2478/avutgs-2018-0005

Stambouli-Meziane H. & Bouazza M. 2012. Anthropogenic effects on plant cover in the Tlemcen region (western Algeria). Open J Ecol 2(03): 141-146. DOI: https://doi.org/10.4236/oje.2012.23017

Thomas N. & Nigam S. 2018. Twentieth-Century Climate Change over Africa: Seasonal Hydroclimate Trends and Sahara Desert Expansion. J Climate 31(9): 3349-3370. DOI: https://doi.org/10.1175/JCLI-D-17-0187.1

Thuiller W., Midgley G. F., Hughes G. O., Bomhard B., Drew G., Rutherford M. C. & Woodward F. I. 2006. Endemic species and ecosystem sensitivity to climate change in Namibia. Glob Chang Biol 12(5): 759-776. DOI: https://doi.org/10.1111/j.1365-2486.2006.01140.x

Torices R. & Anderberg A. A. 2009. Phylogenetic analysis of sexual systems in Inuleae (Asteraceae). Am J Bot 96(5): 1011-1019. DOI: https://doi.org/10.3732/ajb.0800231

Van Vuuren D. P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., Hurtt G. C., Kram T., Krey V., Lamarque J. F., Masui T., Meinshausen M., Nakicenovic N., Smith S. J. & Rose S K. 2011. The representative concentration pathways: an overview. Clim Change 109: 5-31. DOI: https://doi.org/10.1007/s10584-011-0148-z

Yahi N., Vela E., Benhouhou S., De Belair G. & Gharzouli R. 2012. Identifying important plants areas (key biodiversity areas for plants) in northern Algeria. J. Threat. Taxa 4(8): 2753-2765. DOI: https://doi.org/10.11609/JoTT.o2998.2753-65

Zhang K., Yao L., Meng J. & Tao J. 2018. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci Total Environ 634: 1326-1334. DOI: https://doi.org/10.1016/j.scitotenv.2018.04.112