Study of the genetic diversity of Korean, Chinese and Japanese landraces of barley (Hordeum vulgare L.) using microsatellites
PDF

Keywords

barley
genetic diversity
landraces
SSR markers

How to Cite

Park, S., Lee, D., Baek, H.-J., Lee, J., & Farooq, M. (2012). Study of the genetic diversity of Korean, Chinese and Japanese landraces of barley (Hordeum vulgare L.) using microsatellites. Biodiversity: Research and Conservation, 23, 3–13. https://doi.org/10.2478/v10119-011-0018-6

Number of views: 16


Number of downloads: 11

Abstract

Barley (Hordeum vulgare L.) is one of important winter cereals in the world and has been the subject of numerous genetic investigations. Studies of its genetic diversity based on germplasm have a significant impact on crop breeding and conservation of genetic resources. This study was conducted to reveal the genetic diversity in barley landraces from Korean, Chinese and Japanese populations and evaluate the discrimination ability of SSR markers, distributed uniformly throughout the barley genome. Seven SSR primers were used to screen a set of 737 diverse barley landraces from Korea, China and Japan. The observed number of alleles per locus (Na), the effective number of alleles (Ne), and the mean gene diversity (He) were 11.14, 3.6245 and 0.7048, respectively. The number of alleles per locus was highest in Chinese landraces (8.9 alleles), followed by Korean (8.6) and Japanese (6.4). In this regard, HVKASI primer may be useful to distinguish Japanese landraces from others, as this unique allele was only detected at 175 bp in Japanese landraces. The average value of genetic distance was D=0.935. The largest genetic distance (D=1.209) among the three regional (representing each country in general) populations was found between Korean and Japanese populations. Based on the UPGMA dendrogram, four major groups can be distinguished at the similarity value of 0.43. The scatter plot showed overlapping in the central part amongst 3 groups of barley landraces. SSR markers are a powerful tool to examine functional diversity. Rich barley gene pool can be very useful for meeting current and future challenges in barley raising.

https://doi.org/10.2478/v10119-011-0018-6
PDF

References

Anderson J. A., Churchill G. A., Autrique J. E., Sorrell M. E. & Tanksley S. D. 1993. Optimizing parental selection for genetic linkage maps. Genome 36: 181-186.

Becker J. & Heum M. 1995. Barley microsatellite: allele variation and mapping. Plant Mol. Biol. 27: 835-845.

Clark H. B. 1967. The origin and early history of the cultivated barleys. Agric. Hist. Rev. 15: 1-18.

Cregan P. B., Bhagwat A. A., Akkaya M. S. & Rongwen J. 1994. Microsatellite fingerprinting and mapping of soybean. Methods in Molec. Cell Biol. 5: 49-61.

Dawson I. K., Chalmers K. J., Waugh R. & Powell W. 1993. Detection and analysis of genetic variation in Hordeum sponteneum populations from Israel using RAPD markers. Molec. Ecol. 2: 151-159.

Dice L. R. 1945. Measures of the amount of ecologic association between species. Ecol. 26: 297-302.

Diwan N. & Cregan P. B. 1997. Automated sizing of fluorescent labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor. Appl. Genetics 95: 723-733.

Fregeau C. J. & Fourney R. N. 1993. DNA typing with fluorescently tagged short tandem repeats: a sensitive and accurate approach to human identification. BioTechn. 15: 100-119.

Harlan J. R. 1979. On the origin of barley, Hordeum vulgare (Graminea-triticinae). In: N. W. Simmonds (ed.). Evolution of Crop Plants, pp. 93-98. Longman Group, London.

Huang X. Q., Borner A., Roder M. S. & Ganal M. W. 2002. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genetics 105: 699-707.

IBGS 1996. The 7th International Barley Genetics Symposium. University of Saskatchewan, Saskatoon, Canada.

Keim P., Olson T. C. & Shoemarker R. C. 1992. Evaluation of soybean RFLP marker diversity in adapted germplasm. Theor. Appl. Genetics 85: 205-212.

Li J. L., Deng H., Lai D. B., Xu F., Chen J., Gao G., Recker R. R., & Deng H. W. 2001. Toward high- throughput genotyping: dynamic and automatic software for manipulating large-scale genotype data using fluorescently labeled dinucleotide markers. Genome Res. 11: 1304-1314.

Lin J., Jonathan K. J. M.; James A. S., Hunter S. B., Margaret H. M., William K. G., Ude N. & Benjamin F. M. 1996. Identification of molecular markers in soybean comparing RFLP, RAPD and AFLP DNA mapping techniques. Plant Molec. Biol. Repor. 14: 156-169.

Morgante M. & Olivieri A. M. 1993. PCR-amplified microsatellites as markers in plant genetics. Plant J. 3: 175-182.

Nei M. 1973. Analysis of gene diversity in subdivided populations. Proceed. National Acad. Sci. 70: 3321-3323.

Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.

Nevo E., Beiles A. & Zohary D. 1986. Genetic resources of wild barley in the Near East: structure, evoluation and application in breeding. Biol. J. Linnean Soc. 27: 355-380.

Nevo E., Zohary D., Brown A. D. & Haber M. 1979. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33: 815-833.

Pakniyat H., Powell W., Baird E., Handley L. L., Robinson D., Scrimgeour C. M., Hackett C. A., Forster B. P., Nevo E. & Caligari P. D. 1997. AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40: 332-341.

Plucknett D. L., Smith N. H., Willams J. T. & Anishetty N. M. 1987. Genebanks and the world's food. Princeton University Press, Princeton, NJ, USA.

Poehlman J. M. 1985. Adaptation and Distribution. In: D. C. Rusmusson (ed.). Barley, Agronomy series, 26, pp. 1-17. American Society of Agronomy Inc. CSSA. SSSA.

Röder M. S., Korzun V., Wendehake K., Plachke J., Tixier M. H., Leroy P. & Ganal M. W. 1998. A microsatellite map of wheat. Genetics 149: 2007-2023.

Rohlf N. J. 1997. NTSYS-PC: numerical taxonomy and multivariate analysis system. v 2.1. Applied Biostatistics. Exeter Software, New York.

Saghai Maroof M. A., Biyashev R. M., Yang G. P., Zhang Q. & Allard R. W. 1994. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal location, and population dynamics. Proceed. National Acad. Sci. 91: 5466-5470.

Smith R. N. 1995. Ccurate size comparison of short tandem repeatalleles amplified by PCR. BioTechn. 18: 112-128.

Strelchenko P. P., Gumbareva N. K., Kovalyova O. N. & Graner A. 1996. Geographical and breeding trends within Eurasian cultivated barley germplasm revealed by molecular markers. In: S. H. Vaughan, D. A. Kazutoshi, O. Kazuto, S. Kaworu & M. Shoji (eds.). Plant Genetic Resources: Characterization and Evaluation, pp. 115-132. Japan Tsukuba, Research Council Secretariat of MAFF and National Institute of Agrobiological Resources, Kannondai 2-1-2.

Turpeinen T., Tenhola T., Manninen O., Nevo E. & Nissilä E. 2001. Microsatellite diversity associated with ecology factors in Hordeum spontaneum populations in Israel. Molec. Ecol. 10: 1577-1591.

Yeh F. C., Yang R. C. & Boyle T. 1999. POPGENE, version 1.31. Microsoft windows based freeware for population genetic analysis. http://www.ualberta.ca/~fyeh/fyeh