Ethical AI in Healthcare: A Comprehensive Review Addressing Privacy, Security, and Fairness
Journal cover ETHICS IN PROGRESS, volume 16, no. 2, year 2025
PDF

Keywords

AI Ethics
Ethical claims and reality
ethical implications
artificial intelligence

How to Cite

Nkrumah, I. P., Engmann, F., & Adu-Manu, K. S. (2025). Ethical AI in Healthcare: A Comprehensive Review Addressing Privacy, Security, and Fairness. ETHICS IN PROGRESS, 16(2), 31–64. https://doi.org/10.14746/eip.2025.2.2

Number of views: 78


Number of downloads: 51

Abstract

The integration of Artificial Intelligence (AI) into healthcare presents both transformative potential and profound ethical challenges. This paper examines how ethical principles, such as transparency, fairness, accountability, and privacy, are applied and operationalised in healthcare AI. Using a structured narrative review approach, we analysed over 70 peer-reviewed empirical studies, policy documents, and regulatory frameworks that span applications in clinical decision support systems, diagnostics, mental health interventions and personalised medicine. Particular attention is given to the perspectives of diverse stakeholders, including patients, clinicians, data scientists and regulators. We assess fairness using demographic parity and equalised odds and evaluate transparency via explainability metrics and auditability practices. Our findings highlight the persistent issues of demographic bias, lack of stakeholder participation, and regulatory fragmentation. We propose a typology of responsible AI metrics, including data representativeness indices, fairness-accuracy trade-off scores, and human-AI oversight benchmarks, that can guide the ethical evaluation and deployment of AI models. By emphasising intersectionality, contextual equity, and co-designed governance, this study moves beyond generic ethical appeals to concrete implementation strategies. Our contribution offers a practical and interdisciplinary roadmap for aligning AI innovation with patient-centred values, institutional accountability, and evolving EU regulatory standards in the healthcare sector.

https://doi.org/10.14746/eip.2025.2.2
PDF

References

Abujaber A. A. & Nashwan A. J. 2024. “Ethical Framework for Artificial Intelligence in Healthcare Research: A Path to Integrity,” World Journal of Methodology 14(3):94071. https://doi.org/10.5662/wjm.v14.i3.94071

Amin A. N., Kartashov A. I., Ngai W. W., Steele K. R., & Rosenthal N. A. 2023. “Effectiveness, Safety, and Costs of Thromboprophylaxis with Enoxaparin or Unfractionated Heparin in Inpatients with Obesity,” Frontiers in Cardiovascular Medicine 10:1180429. https://doi.org/10.3389/fcvm.2023.1180429

Atzil-Slonim D., Penedo J. M. G., & Lutz W. 2023. “Leveraging Novel Technologies and Artificial Intelligence to Advance Practice-oriented Research,” Administration and Policy in Mental Health and Mental Health Services Research 51:1–12. https://doi.org/10.1007/s10488-023-01309-3

Barocas S., Hardt M., & Narayanan A. 2019. Fairness and Machine Learning: Limitations and Opportunities. Cambridge, Mass.: The MIT Press.

Bataineh A. Q., Mushtaha A. S., Abu-Al Sondos I. A., Aldulaimi S. H., & Abdeldayem M. M. 2024. “Ethical & Legal Concerns of Artificial Intelligence in the Healthcare Sector,” 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS) (pp. 491–495). https://doi.org/10.1109/ICETSIS61505.2024.10459438

Binns R. 2018. “Fairness in Machine Learning: Lessons from Political Philosophy,” Proceedings of the 2018 Conference on Fairness, Accountability and Transparency (FAT) (pp. 149–159). URL: https://proceedings.mlr.press/v81/binns18a/binns18a.pdf

Bowers P., Graydon K., Ryan T., Lau J. H., & Tomlin D. 2024. “Artificial Intelligence-Driven Virtual Patients for Communication Skill Development in Healthcare Students,” Australasian Journal of Educational Technology 40(3):1–19. https://doi.org/10.14742/ajet.9307

Brundage M., Avin S., Clark J., Toner H., Eckersley P., Garfinkel B., ... & Amodei D. 2020. “Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims,” arXiv:2004.07213. URL: https://arxiv.org/abs/2004.07213

Chouldechova A. 2017. “Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments,” Big Data 5(2):153–163. https://doi.org/10.1089/big.2016.0047

Crenshaw K. 1989. “Demarginalizing the Intersection of Race and Sex: A Black Feminist Critique of Antidiscrimination Doctrine, Feminist Theory and Antiracist Politics,” University of Chicago Legal Forum 140:139–167.

Doshi-Velez F. & Kim B. 2017. “Towards a Rigorous Science of Interpretable Machine Learning,” arXiv:1702.08608. https://arxiv.org/abs/1702.08608

Elendu C., Amaechi D. C., Elendu T. C., Jingwa K. A., Okoye O. K., Okah M. J., Ladele J. A., Farah A. H., & Alimi H. A. 2023. “Ethical Implications of AI and Robotics in Healthcare: A Review,” Medicine 102(50):1–7. https://doi.org/10.1097/MD.0000000000036671

Elhaddad M. & Hamam S. 2024. “AI-driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential,” Cureus 16(4):1–9. https://doi.org/10.7759/cureus.57728

Ferrara E. 2023. “Fairness and Bias in Artificial Intelligence: A Brief Survey of Sources, Impacts, and Mitigation Strategies,” Sci 6(1):3. https://doi.org/10.3390/sci6010003

Ferreira J., Domingues, I., Sousa, O., Sampaio, I. L., & Santos J. A. M. 2020. “Classification of Oesophagic Early-stage Cancers: Deep Learning versus Traditional Learning Approaches,” in 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 746–751). https://doi.org/10.1109/BIBE50027.2020.00127

Floridi L. & Cowls J. 2022. “A Unified Framework of Five Principles for AI in Society,” in Machine Learning and the City (pp. 535–545). Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781119815075.ch45

Floridi L., Cowls J., Beltrametti M., Chatila R., Chazerand P., Dignum V., ... & Vayena E. 2018. “AI4People – An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations,” Minds and Machines 28(4):689–707. https://doi.org/10.1007/s11023-018-9482-5

Gadotti A., Adi W., Peixoto D., de Oliveira R., & Granville L. Z. 2024. “Anonymization: The Imperfect Science of Using Data While Preserving Privacy,” Science Advances 10(36):eadn7053. https://doi.org/10.1126/sciadv.adn7053

Hardt M., Price E., & Srebro N. 2016. “Equality of Opportunity in Supervised Learning,” Advances in Neural Information Processing Systems (NeurIPS) 29:1–9. URL: https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf

Hendricks-Sturrup R. M., Simmons M., Anders S., Aneni K., Clayton E. W., Coco J., ... & Malin B. 2023. “Developing Ethics and Equity Principles, Terms, and Engagement Tools to Advance Health Equity and Researcher Diversity in AI and Machine Learning: Modified Delphi Approach,” JMIR AI 2:e52888. https://doi.org/10.2196/52888

Ilori O., Kolawole T. O., & Olaboye J. A. 2024. “Ethical Dilemmas in Healthcare Management: A Comprehensive Review,” International Medical Science Research Journal 4(6):1–23. https://doi.org/10.51594/imsrj.v4i6.1251

Iwaya L. H., Ahmad A., & Babar M. A. 2020. “Security and Privacy for mHealth and uHealth Systems: A Systematic Mapping Study,” IEEE Access 4Jobin A., Ienca M., & Vayena E. 2019. “The Global Landscape of AI Ethics Guidelines,” Nature Machine Intelligence 1(9):389–399. https://doi.org/10.1038/s42256-019-0088-2

John T. 2022. “The Ethical Considerations of Artificial Intelligence in Clinical Decision Support,” Proceedings of the Wellington Faculty of Engineering Ethics and Sustainability Symposium (pp. 1–8). https://doi.org/10.26686/wfeess.vi.7649

Karathanasopoulou K. N., Alexandropoulou C.-A. I., Panagiotopoulos I. E., & Dimitrakopoulos G. J. 2023. “An Empirical Investigation on Technology Acceptance of AI-enabled Clinical Decision Support Systems in Nursing Practice,” in 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE) (pp. 1000–1007). https://doi.org/10.1109/CSCE60160.2023.00167

Khalid N., Qayyum A., Bilal M., Al‑Fuqaha A. I., & Qadir J. 2023. “Privacy‑Preserving Artificial Intelligence in Healthcare: Techniques and Applications,” Computers in Biology and Medicine 158:106848. https://doi.org/10.1016/j.compbiomed.2023.106848

Khan M. M., Zubair S., & Yang L. 2024. “Towards Secure and Trusted AI in Healthcare: A Systematic Review,” Journal of Biomedical Informatics 195:105980. https://doi.org/10.1016/j.jbi.2024.104754

Kleinberg J., Mullainathan S., & Raghavan M. 2016. “Inherent Trade-Offs in the Fair Determination of Risk Scores,” arXiv:1609.05807. https://doi.org/10.48550/arXiv.1609.05807

Kumar D., Dhalwal R., & Chaudhary A. 2024. “Exploring the Ethical Implications of Generative AI in Healthcare,” in The Ethical Frontier of AI and Data Analysis (pp. 180–195). IGI Global. https://doi.org/10.4018/979-8-3693-2964-1.ch011

Kusner M. J., Loftus J., Russell C., & Silva R. 2017. “Counterfactual Fairness,” Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS) (pp. 1–11). Long Beach, CA.

https://doi.org/10.48550/arXiv.1703.06856

Li N., Li T., & Venkatasubramanian S. 2007. “t-Closeness: Privacy beyond k-Anonymity and l-Diversity,” Proceedings of the 23rd International Conference on Data Engineering (ICDE) (pp. 106–115). https://doi.org/10.1109/ICDE.2007.367856

Lipton Z. C. 2018. “The Mythos of Model Interpretability,” Communications of the ACM 61(10):36–43. https://doi.org/10.1145/32332

Mittelstadt B. 2019. “Principles Alone Cannot Guarantee Ethical AI,” Nature Machine Intelligence 1(11):501–507. https://doi.org/10.1038/s42256-019-0114-4

Morley J., Floridi L., Kinsey L., & Elhalal A. 2020. “From What to How: An Overview of AI Ethics Tools, Methods and Research to Translate Principles into Practices,” Science and Engineering Ethics 26(4):2141–2168. https://doi.org/10.1007/s11948-019-00165-5

Morley J., Machado C. C. V., Burr C., Cowls J., Joshi I., Taddeo M., & Floridi L. 2020. “The Ethics of AI in Health Care: A Mapping Review,” Social Science & Medicine 260:113172. https://doi.org/10.1016/j.socscimed.2020.113172

Ojewale V., Steed R., Vecchione B., Birhane A., & Raji I. D. 2024. „Towards AI Accountability Infrastructure: Gaps and Opportunities in AI Audit Tooling,” arXiv:2402.17861v3. https://doi.org/10.48550/arXiv.2402.17861

Ossa L. A., Milford S. R., Rost M., Leist A. K., Shaw D., & Elger B. 2024. “AI Through Ethical Lenses: A Discourse Analysis of Guidelines for AI in Healthcare,” Science and Engineering Ethics 30(24):1–21. https://doi.org/10.1007/s11948-024-00486-0

Palmer C. E., Marshall E., Millgate E., Warren G., Ewbank M. P., Cooper E., ... & Blackwell A. D. 2024. “Combining AI and Human Support in Mental Health: A Digital Intervention with Comparable Effectiveness to Human-Delivered Care,” medRxiv 27:e69351. https://doi.org/10.2196/69351

Rahwan I., Cebrian M., Obradovich N., Bongard J., Bonnefon J. F., Breazeal C., ... & Lazer D. 2019. “Machine Behaviour,” Nature 568(7753):477–486. https://doi.org/10.1038/s41586-019-1138-y

Seitzinger P. & Kalra J. 2023. “The Role of Emerging Technologies in Health Emergency Planning and Preparedness,” Emerging Technologies in Healthcare and Medicine 116:189–194. https://doi.org/10.54941/ahfe1004371

Soni R. 2024. “Enhancing Transparency and Accountability in Predictive Maintenance with Explainable AI,” International Journal of Scientific Research in Engineering and Management 08(04):1–5. https://doi.org/10.1109/ACET61898.2024.10730480

Suleski T., Ahmed M., Yang W., & Wang E. 2023. “A Review of Multi‑Factor Authentication in the Internet of Healthcare Things,” Digital Health 9:20552076231177144. https://doi.org/10.1177/20552076231177144

Svedberg P., Reed J. E., Nilsen P., Barlow J., Macrae C., & Nygren J. 2022. “Towards Successful Implementation of Artificial Intelligence in Healthcare Practice: A Research Program,” JMIR Research Protocol 11(3):e34920. https://doi.org/10.2196/34920

UNESCO 2021. Recommendation on the Ethics of Artificial Intelligence. Paris: UNESCO (pp. 1–43). URL: https://unesdoc.unesco.org/ark:/48223/pf0000381137. Accessed September 29, 2025.

Venkatasubbu S. & Krishnamoorthy G. 2022. “Ethical Considerations in AI Addressing Bias and Fairness in Machine Learning Models,” Journal of Knowledge Learning and Science Technology 1(1):130–138. https://doi.org/10.60087/jklst.vol1.n1.p138

Weller A. 2019. “Transparency: Motivations and Challenges,” in W. Samek et al. (Eds.), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Lecture Notes in Computer Science (pp. 23–40). Cham: Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-28954-6_2

World Health Organization 2021. Ethics and Governance of Artificial Intelligence for Health: WHO Guidance. Geneva: WHO. URL: https://iris.who.int/server/api/core/bitstreams/f780d926-4ae3-42ce-a6d6-e898a5562621/content