Wolicjonalne mechanizmy inicjowania ruchu

Main Article Content

Maciej Raś

Abstrakt

Artykuł stanowi przegląd wiedzy nad procesami mózgowymi odpowie- dzialnymi za proste wolicjonalne działania motoryczne. Procesy te manifestują się pod postacią potencjału gotowości – aktywności elektrycznej mózgu (rejestrowanej przez elek- troencefalograf) pojawiającej się na moment przed wykonaniem ruchu w okolicach czub- ka głowy. W artykule omówiona zostaje zarówno charakterystyka tego potencjału – jego kształt i zależność od warunków specyficznych dla wykonywanego zadania, jak również jego dokładniejsza lokalizacja mózgowa. Zrozumienie mechanizmów odpowiedzialnych za powstawanie najbardziej podstawowych działań jest pierwszym koniecznym do uczynienia krokiem na drodze do wyjaśnienia bardziej złożonych ludzkich zachowań.

Downloads

Download data is not yet available.

Article Details

Dział
Artykuły

Referencje

  1. Bayne, T., Pacherie, E. (2004). Bottom up or top down? Philosophy, Psychiatry and Psychology, 11 (1), 1–11.
  2. Bates, J. A. V. (1951). Electrical activity of the cortex accompanying movement, J. Physiol, (113), 240–257.
  3. Bengtsson, S. L., Lau, H. C., Passingham, R. E. (2009). Motivation to do well enhances responses to errors and self-monitoring. Cerebral Cortex, 19 (4), 797–804. http://doi.org/10.1093/cercor/bhn127
  4. Bocker, K. B. E., Brunia, C. H. M., Berg-Lenssen, M. M. C. van den. (1994). A spatiotemporal dipole model of the stimulus preceding negativity (spn) prior to feedback stimuli. Brain Topography, 7(1), 71–88. http://doi.org/10.1007/BF01184839
  5. Brunia, C. H. M., Boxtel, G. J. M. van. (2001). Wait and see. International Journal of Psychophysiology, 1 (43), 59–75.
  6. Cui, R. Q., Deecke, L. (1999). High resolution DC-EEG analysis of the Bereitschaftspotential and post movement onset potentials accompanying uni- or bilateral voluntary finger movements. Brain Topography, 11 (3), 233–249.
  7. Cunnington, R., Windischberger, C., Deecke, L., Moser, E. (2002). The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. NeuroImage, 15 (2), 373–385. http://doi.org/10.1006/nimg.2001.0976
  8. Cunnington, R., Windischberger, C., Deecke, L., Moser, E. (2003). The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response. NeuroImage, 20 (1), 404–412.
  9. Cunnington, R., Windischberger, C., Moser, E. (2005). Premovement activity of the presupplementary motor area and the readiness for action: studies of time-resolved event-related functional MRI. Human Movement Science, 24 (5-6), 644–656. http://doi.org/10.1016/j.humov.2005.10.001
  10. Deecke, L., Grozinger, B., Kornhuber, H. H. (1976). Voluntary finger movement in man: Cerebral potentials and theory. Biological Cybernetics, 23 (2), 99–119. http://doi.org/10.1007/BF00336013
  11. Deecke, L., Kornhuber, H. (2003). Human freedom, reasoned will, and the brain: The bereitschaftspotential story. W: Jahanshahi, M., Hallett M. (red.) The Bereitschaftspotential. Movement-related cortical potentials. New York: Kluver Academic/Plenum Publishers, s. 283–320.
  12. Deecke, L., Scheid, P., Kornhuber, H. (1969). Distribution of readiness potential, premotion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements. Experimental Brain Research, (7), 158–168.
  13. Dick, J. P., Rothwell, J. C., Day, B. L., Cantello, R., Buruma, O., Gioux, M., . . . Marsden, C. D. (1989). The Bereitschaftspotential is abnormal in Parkinson’s disease. Brain: A Journal of Neurology, 112 (1), 233–244.
  14. Eccles, J. C. (1982). The initiation of voluntary movements by the supplementary motor area. Archiv F¨ur Psychiatrie Und Nervenkrankheiten, 231 (5), 423–441.
  15. Erdler, M., Beisteiner, R., Mayer, D., Kaindl, T., Edward, V., Windischberger, C., . . . Deecke, L. (2000). Supplementary motor area activation preceding voluntary movement is detectable with a whole-scalp magnetoencephalography system. NeuroImage, 11 (6), 697–707. http://doi.org/10.1006/nimg.2000.0579
  16. Feinberg, T. E., Schindler, R. J., Flanagan, N. G., Haber, L. D. (1992). Two alien hand syndromes. Neurology, 42 (1), 19–24.
  17. Fried, I., Katz, A., McCarthy, G., Sass, K. J., Williamson, P., Spencer, S. S., Spencer, D.D. (1991). Functional organization of human supplementary motor cortex studied by electrical stimulation. The Journal of Neuroscience, 11 (11), 3656–3666.
  18. Graziano, M. S. A., Aflalo, T. N. (2007). Rethinking cortical organization: moving away from discrete areas arranged in hierarchies. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 13 (2), 138–147. http://doi.org/10.1177/1073858406295918
  19. Grezes, J., Decety, J. (2002). Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia, 40 (2), 212–222.
  20. Jankelowitz, S. K., Colebatch, J. G. (2002). Movement-related potentials associated with self-paced, cued and imagined arm movements. Experimental Brain Research, 147 (1), 98–107. http://doi.org/10.1007/s00221-002-1220-8
  21. Jasper, M. H. (1958). The ten-twenty electrode system of the international federation. Clin Neurophysiol, 10, 371–375.
  22. Kitamura, J., Shibasaki, H., Kondo, T. (1993). A cortical slow potential is larger before an isolated movement of a single finger than simultaneous movement of two fingers. Electroencephalography and Clinical Neurophysiology, 86 (4), 252–258.
  23. Kornhuber, H. H., Deecke, L. (1965). Hirnpotential¨anderungen bei Willk¨urbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pfluger’s Archiv f¨ur die gesamte Physiologie des Menschen und der Tiere, 284 (1), 1–17. http://doi.org/10.1007/BF00412364
  24. Krainik, A., Leh´ericy, S., Duffau, H., Vlaicu, M., Poupon, F., Capelle, L., . . . Marsault, C. (2001). Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology, 57 (5), 871–878.
  25. Kristeva, R., Cheyne, D., Deecke, L. (1991). Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Electroencephalography and Clinical Neurophysiology, 81 (4), 284–298.
  26. Kutas, M., Donchin, E. (1974). Studies of squeezing: handedness, responding hand, response force, and asymmetry of readiness potential. Science, 186 (4163), 545–548.
  27. Lang, W. (2003). Surface Recordings of the Bereitschaftspotential in Normals. W: Jahanshahi M., Hallett M. (red.) The Bereitschaftspotential. Springer US, s. 19–34.
  28. Libet, B., Gleason, C. A., Wright, E. W., Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain: A Journal of Neurology, 106 (3), 623–642.
  29. Luck, S. J. (2004). An Introduction to Event-Related Potentials and Their Neural Origins. W: An Introduction to the Event-Related Potential Technique. MIT Press.
  30. Makoshi, Z., Króliczak, G., van Donkelaar, P. (2011). Human supplementary motor area contribution to predictive motor planning. Journal of Motor Behavior, 43 (4), 303–309. http://doi.org/10.1080/00222895.2011.584085
  31. Mushiake, H., Inase, M., Tanji, J. (1991). Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. Journal of Neurophysiology, 66 (3), 705–718.
  32. Nachev, P., Kennard, C., Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9 (11), 856–869. http://doi.org/10.1038/nrn2478
  33. Nakamura, K., Sakai, K., Hikosaka, O. (1998). Neuronal activity in medial frontal cortex during learning of sequential procedures. Journal of Neurophysiology, 80 (5), 2671–2687.
  34. Passingham, R. E., Bengtsson, S. L., Lau, H. C. (2010). Medial frontal cortex: from selfgenerated action to reflection on one’s own performance. Trends in Cognitive Sciences, 14 (1), 16–21. http://doi.org/10.1016/j.tics.2009.11.001
  35. Picard, N., Strick, P. L. (1996). Motor areas of the medial wall: a review of their location and functional activation. Cerebral Cortex, 6 (3), 342–353.
  36. Pockett, S. (2006). The neuroscience of movement. W: Pockett S., Banks W. P., Gallagher S. (red.) Does Consciousness Cause Behavior. The MIT Press, s. 9–24.
  37. Praamstra, P., Stegeman, D. F., Horstink, M. W., Brunia, C. H., Cools, A. R. (1995). Movement-related potentials preceding voluntary movement are modulated by the mode of movement selection. Experimental Brain Research, 103 (3), 429–439.
  38. Praamstra, P., Stegeman, D. F., Horstink, M. W., Cools, A. R. (1996). Dipole source analysis suggests selective modulation of the supplementary motor area contribution to the readiness potential. Electroencephalography and Clinical Neurophysiology, 98 (6), 468–477.
  39. Rizzolatti, G., Luppino, G., Matelli, M. (1996). The classic supplementary motor area is formed by two independent areas. Advances in Neurology, 70, 45–56.
  40. Rushworth, M. F. S., Walton, M. E., Kennerley, S. W., Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in Cognitive Sciences, 8 (9), 410–417. http://doi.org/10.1016/j.tics.2004.07.009
  41. Shibasaki, H., Barrett, G., Halliday, E., Halliday, A. M. (1980). Cortical potentials following voluntary and passive finger movements. Electroencephalography and Clinical Neurophysiology, 50 (3–4), 201–213.
  42. Shibasaki, H., Hallett, M. (2006). What is the Bereitschaftspotential? Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 117 (11), 2341–2356. http://doi.org/10.1016/j.clinph.2006.04.025
  43. Shima, K., Aya, K., Mushiake, H., Inase, M., Aizawa, H., Tanji, J. (1991). Two movementrelated foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements. Journal of Neurophysiology, 65 (2), 188–202.
  44. Simonetta, M., Clanet, M., Rascol, O. (1991). Bereitschaftspotential in a simple movement or in a motor sequence starting with the same simple movement. Electroencephalography and Clinical Neurophysiology, 81 (2), 129–134.
  45. Slobounov, S., Hallett, M., Newell, K. M. (2004). Perceived effort in force production as reflected in motor-related cortical potentials. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 115 (10), 2391–2402. http://doi.org/10.1016/j.clinph.2004.05.021
  46. Soon, C. S., Brass, M., Heinze, H.-J., Haynes, J.-D. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience, 11 (5), 543–545. http://doi.org/10.1038/nn.2112
  47. Taylor, M. J. (1978). Bereitschaftspotential during the acquisition of a skilled motor task. Electroencephalography and Clinical Neurophysiology, 45 (5), 568–576. http://doi.org/10.1016/0013-4694(78)90157-8
  48. Walter, W. G., Cooper, R., Aldridge, V. J., Mccallum, W. C., Winter, A. L. (1964). Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature, 203, 380–384.
  49. Weilke, F., Spiegel, S., Boecker, H., von Einsiedel, H. G., Conrad, B., Schwaiger, M., Erhard, P. (2001). Time-resolved fMRI of activation patterns in M1 and SMA during complex voluntary movement. Journal of Neurophysiology, 85 (5), 1858–1863.
  50. Yazawa, S., Ikeda, A., Kunieda, T., Ohara, S., Mima, T., Nagamine, T., . . . Shibasaki, H. (2000). Human presupplementary motor area is active before voluntary movement: subdural recording of Bereitschaftspotential from medial frontal cortex. Experimental Brain Research, 131 (2), 165–177.
  51. Zyss, T. (2007). Zastosowanie układu 10-20 w rozmieszczaniu elektrod do EEG. Elmiko.