Krenologia obszarów młodoglacjalnych na przykładzie Pojezierza Lubuskiego – przegląd badań

Main Article Content



The Polish Lowland is an area with rare and relatively poorly studied springs. The present paper review results of recent studies on springs, their hydrology and environments on Lubuskie Lakeland (5.200 km2) in western part of the Polish Lowland. This area contains over 1,000 springs and seepages outflowing from porous sediments. Most of them are related to thick Pleistocene sediments containing several groundwater bearing layers, which are cut by deep subglacial channels (tunnel valleys). The spring density index is the highest in catchment of the Gryżynka River, with up to 4.8 individual springs and seepages per 1 km2. The most common in the Lubuskie Lakeland are seepages (65%), descending and hillslope outflows. Their water discharge varies from < 0.001 to 50 000 dm3/s. Hydrochemistry of spring waters is dominated by calcium and bicarbonate ions, as well as high concentrations of iron and manganese. Due to the lack of a surface insulation layer, contaminants (various forms of nitrogen) easily migrate to groundwater. Generally, the spring waters have good quality. Moreover continuous observations of the water surface levels in spring supplied water bodies revealed daily fluctuations, which are likely due to evapotranspiration and changes of the filtration coefficient in hyporheic zone.


Download data is not yet available.

Article Details

Jak cytować
SZCZUCIŃSKA, A., MARCINIAK, M., & PŁOCIENNICZAK, J. (1). Krenologia obszarów młodoglacjalnych na przykładzie Pojezierza Lubuskiego – przegląd badań. Badania Fizjograficzne Seria A - Geografia Fizyczna, (10(70), 119-132.


  1. Alley W.M., Healy R.W. La Baugh J.W., Reilly T.E., 2002: Flow and storage in groundwater systems. Sc., 296, 1985–1990.
  2. Appelo C.A.J., Postma D., 2005: Geochemistry, Groundwater and Pollution, 2nd ed. A.A. Balkema, Rotterdam, The Netherlands.
  3. Baścik M., Chełmicki W., Urban J., 2009: Geoconservation of springs in Poland. Episodes 32, 177–185.
  4. Bencala K.E., 2000: Hyporheic zone hydrological processes. Hydrol. Processes, 14, 2797–2798.
  5. Chełmicki W., Jokiel P., Michalczyk Z., Moniewski P., 2011: Distribution, discharge and regional characteristics of springs in Poland. Episodes, 34, 244–256.
  6. Cieśliński R., Piekarz J., 2014: Outflows of groundwater in lakes: case study of Lake Raduńske Górne. Limnol. Rev., 14, 169–179.
  7. Choiński A., Ilyin L., Marszelewski W., Ptak M., 2008: Lakes supplied by springs: selected examples. Limnol. Rev., 8, 4, 145–150.
  8. Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources.
  9. Culver D.C., Holsinger J.R., Feller D.J., 2012: The Fauna of Seepage Springs and Other Shallow Subterranean Habitats in the Mid-Atlantic Piedmont and Coastal Plain. Northeastern Nat., 19, 1–42.
  10. Degirmendžić J., Kożuchowski K., Żmudzka E., 2004: Changes of air temperature and precipitation in Poland in the period 1951 – 2000 and their relationship to atmospheric circulation. Internat. Journ. Clim., 24, 291–310.
  11. Dobrowolski R., Mazurek M., Osadowski Z., 2010: Geological, hydrological and phytosociological conditions of spring mires development in the Parsęta River catchment (Western Pomerania, Poland). Geol., 52, 37–44.
  12. Dragon K., Górski J., 2015: Identification of groundwater chemistry origins in a regional aquifer system (Wielkopolska region, Poland). Environ. Earth Sc,. 73, 2153–2167.
  13. Fetter C.W., 2001: Applied hydrogeology, 4th ed. Pearson New Internat. ed., Harlow, Essex.
  14. Ghobadi M.H., Dehban A., Stakhri M., Mirarabi A., 2018: Investigating the hydrogeological properties of springs in a karstic aquifer in Dorfak region (Guilan Province, Iran). Environ. Earth Sc., 77, 96.
  15. Gosk E., Levins, I., Jørgensen L.F., 2007: Geological Survey of Denmark and Greenland. Bull., 13, 65–68.
  16. Jekatierynczuk-Rudczyk E., 1999: Effects of drainage basin management on the chemical composition of waters in lowland springs. Act. Hydrob., 41, 97–105.
  17. Jekatierynczuk-Rudczyk E., 2006: Water quality in the hyporheic zone of small lowland rivers. Pol. Journ. Environ. Stud., 15, 453–456.
  18. Kløve B., Kvitsand H.M.D., Pitkänen T., Gunnarsdottir M.J., Gaut S., Gardarsson S.M., Rossi P.M., Miettinen I., 2017: Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland. Hydrogeol., J 25, 1033–1044.
  19. Kondracki J., 2002: Geografia regionalna Polski [Regional geography of Poland]. Wyd. Nauk. PWN, Warszawa.
  20. Kresic N., Stevanovic Z., 2010: Groundwater Hydrology of Springs: Engineering, Theory, Management and Sustainability. Elsevier Amsterdam, Boston.
  21. Krygowski B., 1956: O dwóch nowych podziałach na regiony geograficzne Niziny Wielkopolsko-Kujawskiej [About two New divisions into the geographical regions of the Wielkopolsko-Kujawska Lowland]. Bad. Fizjogr. nad Pol. Zach., 3, 75–112.
  22. Kuhta M., Brkić Ž., Stroj A., 2012: Hydrodynamic characteristics of Mt. Biokovo foothill springs in Croatia. Geol. Croat., 65, 41–51.
  23. Macioszczyk T., 1999: Time of the vertical seepage as an indicator of the aquifers’ vulnerability [in Polish with English summary]. Przegl. Geol., 47, 731–736.
  24. Manga M., 2001: Using springs to study groundwater flow and active geologic processes. Ann. Rev. Earth. Planet. Sc., 29, 201–28.
  25. Marciniak M., Szczucińska A.M., 2016: Determination of diurnal water level fluctuations in headwaters. Hydrol. Res., 47, 888–901.
  26. Mazurek M., 2008: Factors affecting the chemical composition of groundwater outflows in the southern part of the Parsęta drainage basin (West Pomerania). Przegl. Geol., 56, 131–139.
  27. Mazurek M., 2011: Geomorphological processes in channel heads initiated by groundwater outflows [The Parsȩta catchment, northwestern Poland]. Quaes. Geograph., 30, 33–45.
  28. Neven K., Stevanovic, Z., 2010. Groundwater Hydrology of Springs. Elsevier, Amsterdam.
  29. Retike, I., Kalvans A., Popovs K., Bikse J., Babre A., Delina A., 2016: Geochemical classification of groundwater using multivariate statistical analysis in Latvia. Hydrol. Res., 47, 799–813.
  30. Rossi P.M., Marttila H., Jyväsjärvi J., Ala-aho P., Isokangas E., Muotka T., Klove B., 2015: Environmental conditions of boreal springs explained by capture zone characteristics. Journ. Hydrol., 531, 992–1002.
  31. Ryan R.J., Boufadel M.C., 2006: Influence of streambed hydraulic conductivity on solute exchange with the hyporheic zone. Environ. Geol., 51, 203–210.
  32. Särkka J., Levonen L., Mäkelä J., 1997: Meiofauna of springs in Finland in relation to environmental factors. Hydrobiol., 347, 139–150.
  33. Schweiger A., Beierkuhnlein C., 2014: Acidity, water temperature and oligarchy rule springs. Frontiers of Biogeograph., 6, 132–143.
  34. Szczucińska A.M., 2014: Spatial distribution and hydrochemistry of springs and seepage springs in the Lubuska Upland of western Poland. Hydrol. Res., 45, 379–390.
  35. Szczucińska A.M., 2016: Spring water chemistry in a formerly glaciated area of western Poland: the contribution of natural and anthropogenic factors. Environ. Earth Sc., 75, 712.
  36. White D.S., 1993: Perspectives on defining and delineating hyporheic zones. J.N. Am. Benthol. Soc., 12, 61–69.
  37. Żynda S., Kijowska J., 2016: Morfogenetyczne formy rzeźby Gryżyńskiego Parku Krajobrazowego [Morphogenetic forms of terrain of Gryzynski Landscape Park], [w:] M. Maciantowicz (ed.), 20 lat Gryżyński Park Krajobrazowy. Gorzów–Zielona Góra, 35–52.